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Supervisor, Statistics, METU

Prof. Dr. Ömür Uğur
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ABSTRACT

EXTENSION OF LEAP CONDITION IN APPROXIMATE STOCHASTIC SIMULATION
ALGORITHMS OF BIOLOGICAL NETWORKS

Demı̇rbüken, Salı̇ha

M.S., Department of Scientific Computing

Supervisor : Prof. Dr. Vilda Purutçuoğlu

Co-Supervisor : Prof. Dr. Ömür Uğur

September 2021, 61 pages

The approximate stochastic simulation (ASS) algorithms are the alternative approaches to
generate the complex biological systems with a loss in accuracy by gaining from computa-
tional demand. There are a number of approximate methods which can successfully simulate
the systems, such as poisson tau-leap and approximate Gillespie algorithms. The common
property of these approaches is that they are based on the leap conditon which controls the
change in hazard functions under a time interval. By means of this interval we can find an in-
terval for the number of simultaneous reactions k in the time interval generated from the leap
condition. In this study, we propose alternative intervals for k that are dependent on the suf-
ficient statistics and also, we derive confidence intervals for k whose parameters are obtained
via maximum likelihood estimator, moment estimators and bayesian estimators. Furthermore,
we extend the leap condition by using higher order Taylor expansion whose original estima-
tors are found under the first order. In our derivations, we use the poisson tau-leap approach
since it is the fundamental approximate stochastic simulation method. Moreover, we apply the
approximate Gillespie algorithm since it is one of the recent approaches that is derived from
the idea of the poisson tau-leap method. We consider that although the proposal approaches
to these two algortihms, they can be also adapted to other algorithms whose derivation are
based on the parametric assumption.
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ÖZ

BİYOLOJİK AĞLARDAKİ YAKLAŞIK STOKASTİK SİMULASYON
ALGORİTMALARINDA SIÇRAMA KOŞULUNUN GENİŞLETİLMESİ

Demı̇rbüken, Salı̇ha

Yüksek Lisans, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Prof. Dr. Vilda Purutçuoğlu

Ortak Tez Yöneticisi : Prof. Dr. Ömür Uğur

Eylül 2021, 61 sayfa

Yaklaşık stokastik simülasyon (YSS) algoritmaları , karmaşık biyolojik sistemleri yaratmak
için hesaplama zamanı bakımından kazançlı olurken, doğruluklarından kaybeden alternatif
yaklaşımlardır. Poisson tau-sıçraması ve yaklaşık Gillespie algoritması gibi sistemleri bu şe-
kilde başarılı bir biçimde simüle edebilen bir dizi yaklaşık yöntem vardır. Bu yaklaşımların
ortak özelliği, belirli bir zaman aralığında hazard fonksiyonlarındaki değişimi kontrol eden
sıçrama koşuluna dayalı olmalarıdır. Bu aralık sayesinde, sıçrama koşulundan oluşturulan za-
man aralığındaki k eşzamanlı reaksiyonlarının sayısı için bir aralık bulabiliriz. Bu çalışmada,
yeterli istatistikte bağımlı olan k için alternatif aralıklar önerilmiş ve parametreleri maksi-
mum olabilirlik tahmin edicisi, moment tahmin edicileri ve bayes tahmin edicileri ile elde
edilen k için güven aralıkları türetilmiştir. Ayrıca, orijinal tahmin edicileri birinci derece-
den bulunan daha yüksek dereceli Taylor açılımı kullanarak sıçrama koşulu genişletilmiştir.
Türevlerimizde, temel yaklaşık stokastik simülasyon olduğu için poisson tau-leap yaklaşı-
mını kullandık. Ayrıca, poisson tau-leap yöntemi fikrinden türetilen kalıcı yaklaşımlardan
biri olduğu için yaklaşık Gillespie algoritmasını uyguladık. Önerinin bu iki algoritmaya yak-
laşmasına rağmen, bunların türetilmesi parametrik varsayıma dayanan diğer algoritmalara da
uyarlanabileceğini düşünüyoruz.

Anahtar Kelimeler: Yaklaşık Stokastik Simulasyon Algoritmaları, Sıçrama koşulu, Güven
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my study.

I would also like to show my appreciation to my former supervisor Assoc. Prof. Dr. Hamdul-
lah Yücel. I believe that he has contributed a lot to me, especially, in terms of both academic
writing and mathematical perspective. Moreover, I am thankfull to everyone in the Institute
of Applied Mathematics.

Furthermore, I want to thank to my friends Zeynep Sakartepe, Gizem Gürleyik, Aslıhan Ke-
sekler for their friendship, support and help.

During the process of thesis writing, sometimes, I used the Caddepark Pharmacy. I would like
to thank to everyone in the pharmacy due to their kindness and services.

Also, I thank to the METU research grant (Project No: 10282) for their support.

Lastly, I owe my most profound gratitude to my parents, my brother, his wife, my dear hus-
band and his family for their continuous support through my entire life. Without your support,
it is hard to study and accomplish. Especially, I would like to point out that my dear husband
Mehmet Demirbüken. I appreciate him for his important help, motivation and love.

xiii



xiv



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

CHAPTERS

1 PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Biological Modelling . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Chemical and Biochemical Kinetics . . . . . . . . . . . . . . . . . . 2

1.3 Leap Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 EXACT AND APPROXIMATED STOCHASTIC SIMULATION ALGORITHMS 7

2.1 Stochastic Simulation Algorithms . . . . . . . . . . . . . . . . . . . 7

2.1.1 Direct Method (Gillespie Algorithm) . . . . . . . . . . . . 7

2.1.2 First Reaction Method . . . . . . . . . . . . . . . . . . . 8

2.1.3 Next Reaction Method (Gibson-Bruck Algorithm) . . . . . 9

2.2 Approximate Stochastic Simulation Algorithms . . . . . . . . . . . 10

2.2.1 Poisson τ - Leap Method . . . . . . . . . . . . . . . . . . 10

xv



2.2.2 Langevin τ -leap Method . . . . . . . . . . . . . . . . . . 12

2.2.3 Estimated Midpoint Techniques . . . . . . . . . . . . . . 12

2.2.4 Binomial τ -leap Methods . . . . . . . . . . . . . . . . . . 14

2.2.5 Modified Poisson τ -leap Method . . . . . . . . . . . . . . 16

2.2.6 τ -leap Method with an Improved Leap-size Selection (The
new τ -selection procedure) . . . . . . . . . . . . . . . . . 17

2.2.7 Approximate Gillespie Algorithm . . . . . . . . . . . . . 19

3 EXTENSION OF LEAP CONDITION . . . . . . . . . . . . . . . . . . . . . 23

3.1 Estimation of Model Parameters Using via Maximum Likelihood Es-
timator (MLE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Confidence Intervals with Poisson Distribution . . . . . . 24

3.1.2 Confidence Intervals with Gamma Distribution . . . . . . 26

3.2 Estimation of Model Parameters by Using MME . . . . . . . . . . . 29

3.3 Confidence Intervals without MLE and MME for Poisson Distribution 31

3.4 Estimation of Model Parameters via Bayesian Approach . . . . . . . 34

3.5 Extension of Leap Condition via 2nd and 3rd Order Truncated Taylor
Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5.1 Extension of Leap Condition by 2nd Order Taylor Expansion 35

3.5.1.1 Confidence Intervals with Poisson Distribu-
tion by Using MLE . . . . . . . . . . . . . . 39

3.5.1.2 Confidence Intervals with Gamma Distribu-
tion by Using MLE . . . . . . . . . . . . . . 43

3.5.2 Extension of Leap Condition via 3rd Order Truncated Tay-
lor Expansion . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6 Basic Numerical Example . . . . . . . . . . . . . . . . . . . . . . . 50

xvi



4 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

APPENDICES

A RAO-BLACKWELL THEOREM . . . . . . . . . . . . . . . . . . . . . . . 59

B DISTRIBUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

B.1 Poisson Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 61

B.2 Gamma Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 61

xvii



xviii



LIST OF ABBREVIATIONS

ASS Approximate Stochastic Simulation

CME Chemical Master Equation

MLE Maximum Likelihood Estimator

MME Method of Moment Estimator

ODE Ordinary Differential Equation

SSA Stochastic Simulation Algorithms

xix



xx



CHAPTER 1

PRELIMINARIES

1.1 Biological Modelling

The modelling makes people discover the elements of a system of interest, their states and
their interactions with other elements. In detail, it is possible to model (some of) the mech-
anisms incluced transcription, translation, gene regulation, cellular signalling, DNA damage
and repair processes, homeostating processes, the cell cycle, or apoptosis in the context of
molecular cell biology. Moreover, it is possible to image the behaviour and time evolution of
populations of individual organisms as well as the duty of a tissue, organ or even an entire
organisms can be modelled [20].

In addition to these, to analyze the effect of interactions between the model components, bio-
logical modelling aims to collect a number of small models of well-understood mechanisms
into a large model in data repository [20].

Why is stochastic modelling necessary? Although deterministic modelling can provide sat-
isfactory informations about the biological systems, it cannot explain the randomless of the
model. Therefore, we need to use more advance approach which is based on some advanced
computational technology such as stochastical modelling [20].

Furthermore, when complex system are studied, the dynamics of the system are substantially
stochastic, not deterministic [20]. As a basic example, let consider the linear birth-death
process. The ordinary differential equation (ODE)

dY (t)

dt
= (λ− µ)Y (t) (1.1)

stands for the change in the number of bacteria in the colony at time zero also known to
be as y0. Hereby, λ and µ denote the new individuals (birth) and the death rate per unit
time, respectively. Then, the analytic solution of the given ODE in Equation (1.1) is found
as λ(t) = y0exp((λ − µ)t). Here, there is a problem since the number of bacteria does
not multiply continuosly and deterministicly. Actually, it is discretely and stochastically [20].
With more details, the level of molecular populations can alter considerably by discrete integer
amounts, the time evolution of a biochemically reacting systems is continous [8].
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Also, for the mathematical modelling, the system should be homogeneous. This is satisfied
under the the conditions in which volume is constant, temperature and pressure are fixed
[8]. Otherwise, it can be about diffusion process. In detail, if the reaction rate constant
changes, the the temperature also changes. Because the reaction rate constant is based on the
temperature [16].

1.2 Chemical and Biochemical Kinetics

A general form of the chemical reactions can be shown by the following way.

m1A1 + m2A2 + . . .+ mrAr −−→ n1B1 + n2B2 + . . .+ npBp, (1.2)

where r is the number of reactants and p is the number of products. Ai refers to the ith reactant
molecule and Bj presents the jth product molecule. Furthermore, mi represents the number
of molecules of Ai consumed in a single reaction step, while the subindex i is i = 1, 2, . . . , r

and nj indicates the number of Bj produced in a single reaction step for j = 1, 2, . . . , p .
Also, coefficients mi and nj are called as stoichiometries [20].

Basically, consider the system in below [9].

R1 :Y1 + Y2
k1−−→ Y3 + Y4

R2 :2 Y1
k2−−→ Y1 + Y2 (1.3)

R3 :Y1
k3−−→ Y2,

where Rj (j = 1, 2, . . . ) means the reaction channel. In this expression, the quantity of each
chemical is considered as a concentration. In detail, it is quantified in moles per litre , M ,
altering continuosly as the reaction continues. Finally, [Y ] is the notation for the concentration
of a chemical species Y as shown in Equation (1.4) [20].

The ODEs for the system (1.3) can be shown by

d[Y1]

dt
=− c1[Y1][Y2]− c2[Y1]− c3[Y1]

d[Y2]

dt
=− c1[Y1][Y2] + c2[Y1] + c3[Y1] (1.4)

d[Y3]

dt
=c1[Y1][Y2]

d[Y4]

dt
=c1[Y1][Y2],

where c1, c2, c3 are the rate constants which shows the speed of each reaction (j = 1, 2, 3).
Then,

v1 = (−1,−1, 1, 1), v2 = (−1, 1, 0, 0), v3 = (−1, 1, 0, 0).

2



Here, the vector of vµi denotes the change in the Si molecular population caused by the
occurence of oneRµ reaction [9]. Also, the system can be written as a matrix form as follows.

d

dt


[Y1]

[Y2]

[Y3]

[Y4]

 =


−1 −1 −1

−1 1 0

1 0 0

1 0 0


4×3

c1[Y1][Y2]

c2[Y1]

c3[Y2]


3×1

, (1.5)

where the (4× 3)- dimensional matrix is the stoichiometry matrix, V , of the reaction system
[20]. The set of Equations (1.4), also called as the reaction rate equations (RREs), is the
set of coupled, first order, ordinary differantial equations traditionally used to define the time
evolution of a well-stirred chemically system [12].

Additionally, by setting the right hand side of the ODE (1.4) to be zero, it can be reached to
the equilibrium solution of the system analyticly. In other words, the solution of the following
system gives the equilibrium solution.

−c1[Y1][Y2]− c2[Y1]− c3[Y2] = 0,

−c1[Y1][Y2] + c2[Y1] = 0,

c1[Y1][Y2] = 0.

Alongside being the reaction rate constants, ki, in the deterministic systems, the stochastic
system has stochastic rate constants ci and associated rate law (hazard function), hi(y, ci),
where Y = (Y1, . . . , Yn) is the current state of the system. Also, hi(y, ci) is determined by
reaction Ri, respectively. Actually, hi(Yi, . . . , YN ) gives the number of distinct combinations
of Ri reactant molecules in the system when there are exactly Yi molecules (i = 1, . . . , N ).
For the system in (1.4) the following funtions can be written

h1(Y, c1) =Y1Y2

h2(Y, c2) =
Y1(Y1 − 1)

2
(1.6)

h3(Y, c3) =Y1

(1.7)

Also, the propensity, i,e., the hazard, function aj(y) is found by aj(y) = cjhj(y). Therefore,
it can be written the equality aj(y) = hj(y, cj). Then, aj(y) gives the the probability that an
Ri reaction will happen in the time interval (t, t+ dt] [9], [10], [20]. That is,

ajdt , the probability, given Y (t) = y, that are Rj reaction will occur somewhere

inside Ω in the next infinitesimal time interval (t, t+ dt]. (1.8)

From Equation (1.8), it can be obtained via the following probability.

P (y, t|y0, t0) , Prob{Y (t) = y, given Y (t0) = y0} (1.9)

By using Equation (1.8) and (1.9), the derivation below is acquired

∂P (y, t|y0, t0)

∂t
=

M∑
j=1

[aj(y − vj)P (yx− vj , t|y0, t0)− aj(y)P (y, t|y0, t0)]. (1.10)

3



In other words, it is a chemical master equation (CME) that indicates the probability that each
species will get a specified molecular population at a given future [12].

Equation (1.10) can be solved occasionally for the probability density function of Y (t). Here,
as a novelty, a new probability function p(τ, j|y, t) is defined rather than using the function
P (Y, t|Y0, t0) to simulate the trajectories of Y (t) versus t. The associated definition can be
presented as below.

p(τ, j|y, t)dτ , the probability, given Y (t) = y, that the next reaction in the system will
occur in the infinitesimal time interval [t+ τ, t+ τ + dt], and will be an Rj reaction.

Then,

p(τ, j|y, t) = aj(y)exp(−a0(y)τ), (1.11)

where

a0(y) ,
M∑
j′=1

aj(y). (1.12)

Actually, Equation (1.11) is the mathematical basis for the stochastic simulation algorithm
[12].

1.3 Leap Condition

The time step τ should be selected small enough that there is no significance change in the
propensity function during the time interval [t, t + τ ]. In fact, the value of the function will
not be altered by macroscopically noninfinitesimal. Actually, the propensity function will
stay constant at the value of aj(Y ) for each reaction channel Rj during the time interval
[t, t+ τ ] for j = 1, . . . , r. This implies that the probability that channel Rj will occur during
any infinitesimal interval dt in [t, t + τ ] is aj(Y )dt. Then, in the history axis of the system,
leaping down process can be in the following way by the amount of τ from state Y at time
t. The number of times reaction channel Rj fires in [t, t + τ ] is the value of kj . A sample
value of kj can be generated from a random variable using some probability distribution such
as poisson distribution or gamma distribution. Then, λ is the net change in the state of the
system in [t, t + τ ]. λ can be described by λ =

∑r
j=1 kjvj , where vj is the jth row of the

stoichiometry matrix V . Thus, the leap condition satisfies that the following substraction
|aj(Y + λ) − aj(Y )| is effectively infinitesimal [11]. In other words, the leap condition can
be shown by

|aj(Y + λ)− aj(Y )| ≤ εa0(Y ).

Hereby, in this study, we aim to construct the confidence intervals for the population param-
eters k, which is the number of the reactions in the system, and the time step τ in the two
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approximate SSAs, namely, the poisson tau-leap, which is the most recent approximate SSAs
and its extension, which is called the approximate Gillespie method, by using maximum like-
lihood estimator (MLE), method of moment estimator(MME) and Bayesian approach. All
these approaches are based on the leap condition. In the current literature, the k and τ in
these simulation approaches have been used via a conservative one-sided confidence interval
without controlling the significance level α. Hence, this study suggests realistic and accurate
confidence intervals for both parameters by controlling α and by using the MLE, MME and
Bayesian approach of the modal parameters so that narrower and more accurate confidence
intervals can be obtained theoretically. Thereby, in the organization of this thesis, we intro-
duce exact and approximate stochastic simulation algorithms in Chapter 2. We present our
confidence intervals inserted to the leap condition of the underlying two approximate SSAs in
Chapter 3. Finally, we conclude our findings and we present the our future work in Chapter
4.
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CHAPTER 2

EXACT AND APPROXIMATED STOCHASTIC SIMULATION
ALGORITHMS

In this study, we use poisson distribution and gamma distribution. In this view, although we
focus on poisson τ -leap method and approximate Gillespie algotrithm, we want to present
main exact and approximate stochastic simulation algorithms in the literature. These ap-
proaches are given in the following.

2.1 Stochastic Simulation Algorithms

Due to the Monte Carlo approach, it is possible to estimate the probability of varying out-
comes if there is an interference of random variables. In other words, this method is used
for the case where the outputs of the experiments are not sure [15].Stochastic simulation al-
gorithm (SSA) is a Monte Carlo procedure to calculate numerically time trajectories of the
molecular populations in exact accordance with the chemical master equation (CME) [13].
However, the SSA is very slow since it forces to simulate every different reaction event [12].
Moreover, it is just available for distinctly finite chemical systems. In other words, to simulate
the system, there should be limited on the total number of molecules in the system. For some
cases, this sides can become an advantage rather than disadvantage because of having a local
connection in the chemical reactions for the systems with huge numbers of population. Fur-
thermore, SSA gives exact solution because unlike numerical approaches, infinitesimal time
increment dt is never approximated by using finite time step ∆t [9]. Below the major SSAs,
namely, the direct method, first reaction method and next reaction method are explained in
detail in the following part.

2.1.1 Direct Method (Gillespie Algorithm)

This method is also called as the Gillespie Algorithm. It investigates for a biological system
answers via two questions [8].

1. Which reaction occurs next?

7



2. When does it occur?

Those questions can be answerable by identifying a reaction probability denstiy function on
the space of continuous time random variable τ with 0 ≤ τ < ∞ and discrete reaction indi-
cator variable j with j = 0, 1, . . . , r showing a density function as

P (τ, j) =

{
hj(Y )exp(−h0(Y )τ) , 0 ≤ τ <∞

0 , otherwise,

where hj(Y ) = ajcj and h0(Y ) =
∑r

j=1 hj(Y ) =
∑r

j=1 ajcj , aj and cj are the number
of the distinct molecular combinations of the given state Y and the stoichiometric reaction
rate constant of the jth reaction, respectively [17]. In this expression, cj has almost the same
meaning with respect to the rate of constants in Equation (1.5) in the sense that it indicates
the speed of the reaction.

By the Gillespie Algorithm, a random value is chosen from exponential distribution with rate
h0(Y ). In other words, time to the next reaction is τ ∼ Exp(h0(Y )). Then, the reaction type
j is chosen randomly with hj/Y

h0(Y ) . Finally, the update of the system continue by using the time
to next event and the event type.
In brief, the steps of the algorithm can be followed as [17],[20];

1. Initialization: Initialize at t = 0 with rate constants c1, . . . , cr and initial numbers of
molecular populations for each species Y1, . . . , Yn for time t, where r and n describe
the total number of reactions and substrates, i.e, species in the system, respectively.

2. Calculate h0(Y ) =
∑r

j=1 hj(Y ) by evaluating hj(Y ) = aj(Y )cj , which relies on
current state Y for each j = 1, 2, . . . , r.

3. Simulate the time to the next event, τ , developed from Exp(h0(Y )) and the reaction
index, j = 1, 2, . . . , r, with probability hj(Y )

h0(Y ) .

4. Install t := t+ τ , then update Y with respect to j. In other cases, update Y := Y + Yj

describes the jth column of the stoichiometry matrix V .

5. If t < Tmax, where Tmax is a total time period, return to step 2.

2.1.2 First Reaction Method

The difference between First Reaction method and the Direct method is that the latter gen-
erates the reaction indicates j and the continuous time τ directly, nonetheless, the former
produces a presumed time τj for the reaction j occuring if no other reaction happened first
[17]. Generally, since the first reaction method is computationally less efficient than the Gille-
spie Algorithm, the usage of this method is seldom when there are many reaction channels in
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the system [11], [12]. In addition to these, like the direct method, in this method, the same
probability distribution is used to generate j and τ . Consequently, to update the hazard func-
tion hj(Y ) = ajcji for j = 1, . . . , r and to find the smallest τj in each iteration, r number
of the variable, τj is generated by this method [17]. In summary, the algorithms for the first
reaction method can be listed as below;

1. Initialization: Initialize the number of the molecules of each species and set t = 0.

2. Calculate the hazard function hj(Y ) = aj(Y )cj for all j.

3. Generate (a presumed time) τj for each j with regard to an exponential distribution with
parameter hj(Y ), τj ∼ Exp(hj(Y )).

4. Choose the least time step τj for the next reaction where j be the index of the smallest
of {τ1, . . . , τr}.

5. Change the number of molecules considering j and τ .

6. Update the time t by := t+ τ .

7. If t < Tmax, go to step 2.

2.1.3 Next Reaction Method (Gibson-Bruck Algorithm)

This method is also known as "Gibson-Bruck Algorithm". Primarily, a change form of the first
reaction method, the first reaction method is faster and more efficient than the Direct method.
But it is more compelling to do. [12]. The basic consept of the method can be summarized as
the following way. Instead of just storing hazard function hj(Y ), both time step τj and hj(Y )

are stored with sensitively recalculating hj(Y )(and τj) if it changes. Moreover, investigating
the set of reactions beforehand and deciding which reactions after which hj(Y ) can be done
by a dependency graph. This graph enables to renew the minimum number of hj(Y )’s. Then,
τi’s is appropriately reused. Although, assuming statistically independent random numbers in
the Monte Carlo simulations are generally not valid, here, it is rightful. Particularly, the study
of Gibson and Bruck (200) [7] presents the proof of this case. Moreover, it can be possible
to reuse all τi’s except for τνi , which is the smallest putative time. On the other hand, the
difference from the First Reaction method is to use absolutive times rather than to use the
relative times. Thereafter, in order to update hj(Y ) (and τj), by using proper data structure
for saving them, an operation indexed priority queves is defined. [7].

The algorithm can be shown below [7],[17].

1. Initialization:

a. Initialize both the numbers of molecules Y and rate of constant c.

b. Calculate hazard functions hj(Y ) for j = 1, . . . , r.
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c. Store the value of τj calculated, where exponential distribution with parameter
hj(Y ), i.e, τj ∼ Exp(hj(Y )).

2. Let k be the index of the smallest τj , i.e., k = min
j
{τj} and set t = τk.

3. Update Y to show execution of the reaction k.

4. Update the hk(Y ) with respect to new state Y and compute τk = t + Exp(hk(Y )),
whereExp(hk(Y )) shows the sample from the exponential distribution with rate hk(Y ).

5. For each reaction j (j 6= k) whose hazard is changed by reaction k,

a. Update h′j(Y ) = hj(Y ) and keep the old hj(Y ) provisionally.

b. Calculate τj = t+
hj(Y )
h′j(Y )

(τj − t).

c. Delete the old hj(Y ).

6. Repeat the step 4 for each reaction j (j 6= k).

7. Go to step 2 if t < Tmax.

For further discussiun at this point, we can refer the study of Gibson and Bruck [7].

2.2 Approximate Stochastic Simulation Algorithms

Even though advancement of the stochastic simulation algortihm (SSA) identified previously
gives helpful results, considering being efficient, the time for any process simulating every
reaction event G is too slow. To speed the time of the simulation, there can be some sacrifice
in the exactness of the SSA. Using approximate SSAs is one way to do this [12]. These
fast algorithms depend on a time discretisation of the Markov process [20]. Here, the main
concept is that, firstly, the time is seperated into small different pieces, called leap. Then, to
be possible to continue with improvement of the state from the start of one piece to another,
the basis kinetics are approximated [20]. Mostly, these algorithms act with the assumption of
the leap condition. In other words, the selected time interval τ should be satisfied that there
is no notable change in the propensity function during the time change from t to t + τ . In
addition to these, since SSAs are computational costly, approximate SSAs make possible to
obtain computationally less demanding.

Below, we present the major approximate SSA and the idea of the leap condition which is the
fundamental approach in the generation of the approximate approaches.

2.2.1 Poisson τ - Leap Method

Under the leap condition, the aim of this method is to enhance intervals between selecting
times with chosen the time interval τ as large as possible [11], [17]. Here, for each reaction
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channel Rj , a random value kj is produced from a Poisson distribution by Poi(hj(Y )τ) in
the time interval [t, t+ τ ], where Y (t) = Y is a state vector. Then, an acceptable τ is reached
via substituting boundary for the difference between

|hj(Y + λ(Y ))− hj(Y )|,

where λ(Y ) =
∑r

j=1 kjvj denotes the net change in the state of the system in [t, t + τ ]. As
kj ∼ Poi(hj(Y )τ), the mean of kj equals to hjτ , i.e., E(kj) = hj(Y )τ and

λ̄(Y, τ) =
r∑
j=1

[hj(Y ).τ ]vj = τξ(Y ) (2.1)

that gives the expected net change in the state for the given time interval. In this equality, j
represents the stoichiometric coefficients of the reaction j corresponding to the jth row of the
net effect matrix V as defined beforehand and hj(Y ) corresponds to the hazard function of
the jth reaction which is found by the product of the rate constant cj and distinct molecular
reactant combination of underlying reaction. Subsequently, ξ(Y ) =

∑r
j=1 hjvj can be rep-

resented as the mean or expected state change in a unit of time by an n- dimensional vector
where each ith component, ξj(Y ), subtends to the expected change of the ith species in an
unit of time. Afterwards, the following inequality is obtained

|hj(Y + λ̄)(Y, τ)− hj(Y )| ≤ εh0(Y ) (2.2)

by using λ(Y, τ) in Equation (2.1). It can be inferred from Equation (2.2) in the following
way. The expected changes in the hazard functions in time τ is restricted by a fraction ε, error
control parameter lying 0 < ε < 1, and the sum of all hazard functions h0 =

∑r
j=1 hj(Y ).

In fact, this inequality presents a leap condition. Consequently, using the first order Taylor
series expansion helps to predict the difference on the left hand side of Equation (2.2). After
the application of the Taylor series expansion, the equality below is obtained.

|hj(Y + λ̄(Y, τ))− hj(Y )| ≈ λ̄(Y, τ)hj(Y ) =

n∑
i=1

τξj(Y )
∂hj(Y )

∂Yi
. (2.3)

Then, setting bji(Y ) =
∂hj(Y )
∂Yi

(i = 1, . . . , n; j = 1, . . . , r) the following inequality can be
shown

τ |
n∑
i=1

ξj(Y )bji(Y ) ≤ εh0(Y )|.

Consequently, the largest value of τ satisfying the leap condition for the given Y and the
preselected ε is calculated by

τ = min

{
εh0(Y )

|
∑n

i=1 ξj(Y )bji(Y )|

}
. (2.4)

After all, using the exact SSA is more preferable rather than Equation (2.4) since the obtained
value of τ is favorable for the leap size. The obtained value of τ in Equation (2.4) would not
be efficient if τ ≤ 1

h0(Y ) despite the fact that it would be accurate. In fact, the time step is
choosen by the approach same as SSA. Not considering of the computational cost, the time
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interval in the Poisson τ -leap methos is more suitable than the time of SSA. Essentially, there
is an incremental difference between them.

In final step, there is an update of the current state in the Poisson τ -leap method by replacing
t by t := t+ τ . In addition, for Y , there is a necessity to determine the largest value of τ and
to be adaptable with the leap condition.

Beside this, in the long-run simulations, Poisson τ -leap algorithm can create problem of neg-
ative molecular populations from the application of this method in various systems. To over-
come this problem, there are some suggested solutions. One of the well-known alternative
solution is the Binomial τ -leap approach. Although it does not give accurate result, to have
smooth approximation of exact SSAs, it overcomes the negativity problem [14],[17],[5].

2.2.2 Langevin τ -leap Method

This approach states that if there is no significance change in the hazard functions hj(Y )′s
(j = 1, . . . , r), by the expected number of execution of reactions in the time step τ that
satisfying the leap condition under the history axis of the system, then it is possible to write
the Poisson distribution as a normal distribution with the same mean and variance when the
number of molecules is large. That is, kj ∼ Poi(hj(Y )τ) ≈ N(hj(Y )τ, hj(Y )τ), where kj
is the number of times of execution of the jth reaction for j = 1, . . . , r. So the steps of the
Langevin τ -leap method can be presented as follows.

The first step is to select τ under the leap condition such that τ � max{ 1
hj(Y )}. The second

step is to choose a sample value kj by putting kj = hj(Y )τ + (hj(Y )τ)
1
2 lj where a sample

value lj is chosen from normal distribution with mean zero and unit variance, lj ∼ N(0, 1),
for each j, (j = 1, . . . , r). The following is calculate the net change in the state λ(Y ) by
λ(Y ) =

∑r
j=1 kjνj , where νj is the n-dimensional net effect vector of the jth reaction in

n-species in the system. The last step is to replace Y := Y + λ(Y ) and t := t + τ and then
to update the system.

In general, this method is successful to improve the speed of the Poisson τ -leap approach,
it can be applicable if the system is large enough to assume the normal distribution in place
of poisson density to describe the change in states. Also, since the leap condition is in the
absolute value, the results cannot be negative values. Thus, it is preferable for very large
systems with large number of per genes, per molecules or any species in the system and
long-run simulation [17], [11].

2.2.3 Estimated Midpoint Techniques

It is neceassary that the chosen time step τ should not modify the propensity function under
the leap condition. Nonetheless, it is possible to face with a problem of increasing compu-
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tational errors when the chosen τ to have a faster simulation than the SSA may bring some
changes the propensity functions. Consider the following example to see the similar prob-
lem in numerical calculations of the differential equation, while solving dY

dt = f(y) by Euler
method (a discretized version of the sde), where ∆t is the alteration in tine along the t axis,
Y (t + ∆t) = Y (t) + f(Y (t))∆t may generate computational errors whenever there is a
change in f during the ∆t. To minimize the errors, one way is to use the estimated-midpoint
(or second order Runge-Kutta) algorithm. In this method, the first one is to calculate the
change in Y as ∆1Y = f(Y (t))∆t and then to substitute it in the value of Y (t+ ∆t), where
Y (t+∆t) = Y (t)+f(Y (t)+ ∆1Y

2 Y )∆t.After that, it is possible to calculate the actual incre-
ment in Y by regarding the slope function f at the estimated midpoint of Y during [t, t+ ∆t]

calculating from the Euler Method.
To get the expected state change λ̄(Y, τ), it can be possible to customize this procesure to the
Poisson τ -leap method. Hereby, Y + d ¯λ(Y, τ)/2e with dze denoting the largest integer in z
corresponds the estimated-midpoint state during the leap τ .
There are two kinds of algorithms for the estimated midpoint tecniques [11],[17].

a. Estimated Midpoint τ -leap Method

Firstly, under the leap condition, calculate the expected state change ¯λ(Y, τ) by ¯λ(Y, τ) =

τ
∑r

j=1 hj(Y )vj during [t, t + τ ]. Hereby, hj(Y ) and vj are the hazard function and the
n-dimensional stoichiometry vector of the jth reaction, respectively. Then, compute the
expected new state Y ′ = Y + [ ¯λ(Y, τ)/2] and generate the number of execution time kj
from a Poisson distribution with mean hj(Y ′)τ for each reaction j = 1, . . . , r, i.e, kj ∼
Poi(hj(Y

′)τ). Finally, obtain the net change in the state λ by λ(Y ) =
∑r

j=1 kjvj and up-
date the system by replacing Y and t with Y + λ(Y ) and t+ τ , respectively [11],[17].

b. Estimated Midpoint Langevin τ -leap Method

Under the leap condition and τ � max{ 1
hj(Y )}, it is possible to approximate Poisson distri-

bution by normal distribution. Therefore, instead of the Estimated-midpoint τ -leap method
in Section 2.2.3, the Estimated-midpoint Langevin τ -leap can be used. In this approach, un-
der the given conditions, the first one is to compute the expected state change ¯λ(Y, τ) =

τ
∑r

j=1 hj(Y )vj . Then, generate a sample value lj coming from normal distribution with
zero mean and unit variance, lj ∼ N(0, 1), and calculate kj = hj(Y

′)τ + (hj(Y
′)τ)1/2lj for

each j = 1, . . . ,M . The remaining steps of the algorithm are the same as the previous one.
Particularly, compute the new expected state Y ′ = Y + [ ¯λ(Y, τ)/2] and the net change in the
state λ(Y ) =

∑r
j=1 kjvj . Lastly, update the system Y + λ(Y ) and t + τ , by replacing the

state Y and the time t, respectively.
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2.2.4 Binomial τ -leap Methods

Some τ -leap methods have a problem of generating negative populations. Particularly, it can
be obtained negative populations in two ways. Firstly, the sample value for the reaction num-
ber could be greater than one of the molecular numbers in that reaction channel. Secondly,
different reaction channel can occur simultaneously [19]. To overcome this problem, Bino-
mial τ -leap approaches are suggested by Chatterjee and Vlachos (2005) [4] and Tian and
Burrage (2004) [19]. According to Chatterjee and Vlachos (2005), conditions for the Bino-
mial τ -leap method are the same as other τ -leap methods. In other words, there is a usage of
the system’s history axis to generate an approximated simulation under the leap condition. In
the time interval [t, t + τ ] given the state Y (t), a maximum number of firings kjmax of each
reaction Rj is calculated by

kjmax = minvij<0

⌈
Yi
|vij |

⌉
.

Hereby, Y shows the current state vector containing the number of molecules Yi(t) of all
substrates (i = 1, . . . , n) at time t, vij presents each entry of the net effect matrix for the
ith species and the jth reaction (j = 1, . . . , r) and also dze denotes the greatest integer in
z. In addition, the hazard functions h′js would be almost constant during [t, t + τ ], where
hj(Y ) = hj(Y (t)) depends on Y (t) [4]. To avoid the negative populations in Binomial τ -
leap method, an upper bound is placed on the number of Si molecules in the time interval
[t, t + τ)[4]. Under the leap condition, with kj’s from binomial distribution kjmax maximum
firings, each Rj firing has a success probability p =

hj(Y )τ

kjmax
(and a fail probability of 1 − p),

where τ = f∑r
j=1 hj(Y )

and f indicates a coarse forming factor greater than 1. If f = 1, it
stands for the average time increment of the exact SSA. In the method, it is possible to deter-
mine the time and the accuracy of the approximation by choosing f < 103 for small steps or
f > 104 for large steps [17].

Moreover, according to Chatterjee and Vlachos(2005) [4], the probability of the number of
firings kj of Rj depending on the binomial distribution can be indicated mathematically in
the following way.

PBD(kj ; p, k
(j)
max) =

k
(j)
max!

kj !(k
(j)
max − kj)!

pkj (1− p)k
(j)
max−kj . (2.5)

In brief, the steps of the algorithms of the Binomial τ -leap can be shown as follows [4].

1. Access the stoichiometric coefficients vij , initial population size Y (0), and the rate
constants c required in calculating the propensities.

2. Start the time at t := t0.

3. Renew the steps 4− 6 up to obtain a maximum time, tmax.

4. Calculate the hazard function hj(Y (t)) with Y (t) and set Ỹ := Y .
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5. Choose admissable τ and update the time t := t+ τ .

6. For j = 1 to r reactions.

a. Get k(j)
max = minvij<0d Ỹi

|vij |e, where dze is the greater integer function.

b. Sample kj from Equation (2.5) as p =
hjτ

kjmax
.

c. Set Ỹi := Ỹi + vijkj for i = 1, . . . , n if vij < 0.

d. Go to step 6a to compute k(j)
max .

7. Update Yi := Yi + vijkj for i = 1, . . . , n.

8. Return to step 3 .

Consequently, the method is a way to overcome the problem of negative populations in the
unbounded Poisson τ -leap methods. The range of sample value is from zero to infitinity in
the Poisson distribution. However, unlike the Poisson approaches, the range of sample value
of Bin(n, p) is an integer between 0 and n.

In addition to the study of Chatterjee and Vlachos (2005), Tian and Burrage (2004) suggested
the Binomail τ -leap method to remove the problem of negative populations in the Poisson
τ -leap approaches.

In this approach, the kj is obtained from binomail distribution Bin(Nj ,
hj(Y )τ
Nj

) under the
condition

0 ≤ hj(Y )τ

Nj
≤ 1. (2.6)

Hereby, Nj is defined as follows.

1. The first-order reaction
S1

c1−−→ S3, hj(Y ) = c1Y1, Nj = Y1.

2. The second-order reaction
S1 + S2

c2−−→ S4, hj(Y ) = c2Y1Y2, Nj =min{Y1, Y2}.

3. The homodimer formation (Y1 ≥ 2)
S1 + S1

c3−−→ S5, hj(Y ) = 1
2c3Y1(Y1 − 1), Nj =mind1

2Y1e.

The above equations, cj denotes jth reaction rate and Yi i = 0, . . . , n represents the numbers
of molecules of each sprecies Si. Whereas in the previous method, there is a single reaction
to overcome the negativity problem of the Poisson distribution, this approach handle two
reactions simultaneously under the condition

0 ≤ hj(Y ) + hl(Y )

Ni
≤ 1, (2.7)
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where hj(Y ) and hl(Y ) are the propensity functions of reaction channels Rj and Rl, respec-
tively. That is, hj(Y ) = Nj

hj(Y )
Nj

and hl(Y ) = Nl
hl(Y )
Nl

.

The sampling technique for the reaction number of channels Rj and Rk is following.

1. A sample value kjk for the total reaction number of Rj and Rk is generated from bino-
mial distribution Bin(Ni,

hj(Y )+hl(Y )
Ni

τ), where Ni = min{Nj , Nl} 6= 0.

2. A sample value kj for the number of reactionRj is generated from binomial distribution
Bin(kjl,

hj(Y )
hj(Y )+hl(Y )).

3. The reaction number of Rl is obtained from kl = kjl − kj [19],[17].

Now, the method can be defined as follows. Firstly, a step size τ choosen from the τ -selection
process Equation (2.13) satisfying Equation (2.6) for each reaction channel and for a given
error control parameter ε. Then, a sample value kj is generated from the binomial distribution
Bin(Nj ,

hj(Y )τ
Nj

) for j = 1, . . . , r. When the reactant species undergo two or more reaction
channels, the simultaneous reaction step size Equation (2.7) is applied and sampling technique
is used for these reaction channels. Finally, the system is updated by [19]

Y (t+ τ) = Y (t) +
M∑
j=1

vjkj .

As a result, both binomial τ -leap methods ([4] and [19] allow to solve negativity problem of
the Poisson τ -leap method and to advance in the computational efficiency of the algorithm
owing to the larger step sizes.

2.2.5 Modified Poisson τ -leap Method

The developed version of the Poisson τ -leap method is the modified Poisson τ -leap method
which aims to avoid the problem of negative populations and to obtain more accurate results
than the basic Poisson τ -leap approach. In this method, there is no acceptance of the any time
step τ bringing about the negativity. Until obtaining no negative populations, smaller values
of τ reduced by a factor is taken. The algorithm can be explained by the following steps.

1. Calculate all the propensity functions and their sum

h0(Y ) =
r∑
j=1

hj(Y )

in state Y at time t.

2. Describe the set of critical reactions Rj in each τ such that currently reaction channels
Rj for which hj(Y ) > 0 and Lj ≤ nc(j = 1, . . . , r). Hereby, hj(Y ) shows the
hazard function for the jth reaction and Lj = minvij<0d Yi

|vij |e as emphasized in the

16



Binomial τ -leap method. vij indicates the number of molecules Yi(t) of all substrates
at time t and nc shows the critical value setting the performance of the method anywhere
between the original Poisson τ -leap method (nc = 0) and the exact SSA (nc =∞).

3. Calculate the largest time step τ ′ regarding as the Equation (2.13) by using only the non-
critical reactions j′. If there are critical reactions, all critical reactions, then replace τ ′

by∞, i.e, τ ′ =∞.

4. If the value of τ ′ selected in the step 2 is less than a small multiple, like 10, of 1
h0(Y ) ,

then the leap is declined and the exact SSA is used to get admissable number of times,
like 100, before again trying a τ -leap method. In addition to these, if τ ′ is larger than
chosen small multiple of 1

h0(Y ) , then approve it and continue to step 5. Otherwise, stop
and turn back inital step.

5. Evaluate the sum of the hazards of the critical reactions hc0(Y ). Generate τ ′′, τ ′′ ∼
Exp(hc0(Y )), with mean 1

hc0(Y ) .

6. a. If τ ′ < τ ′′: Take τ = τ ′. Set kj = 0 for all the critical reactions kj . On the other
hand, generate kj ∼ Poi(hj(Y )τ ), for the non-critical reactions Rj .

b. If τ ′′ ≤ τ ′: Take τ = τ ′′. Produce jc as a sample of the integer random variable
with probabilities hj(Y )

hc0(Y ) , where j indicates the index of critical reactions on j. Then,
set kjc = 1 and set kj = 0 for all the other critical reactions. Generate kj sampled from
Poisson distribution with mean hj(Y )τ for the noncritical reactions Rj .

7. Update the time t and the state Y by t := t+τ and Y := Y +
∑r

j=1 kjvij , respectively.

8. Undo step 7 in case that any component of Y is negative, replace τ ′ by τ ′

2 and go back
to step 6. Otherwise, stop and turn back the initial step.

9. Save (t, Y ) if desired. Return to step 1, or else stop [14], [11],[2].

2.2.6 τ -leap Method with an Improved Leap-size Selection (The new τ -selection pro-
cedure)

Due to the previously introduced methods, Poisson τ -leap (Section 2.2.1), estimated mid-
point (Section 2.2.3), the following inequality should be satisfied.

hj(Y + λ(Y ))− hj(Y ) ≤ εh0(Y ), (2.8)

where hj(Y )′s (j = 1, . . . , r) are the hazard functions of each reaction j and h0(Y ) is the
sum h0(Y ) =

∑r
j=1 hj(Y ). Here, λ(Y ) shows the net change of state Y and ε denotes the

error control parameter (0 < ε < 1). Also, the largest value of τ is found as

τ = minj∈[1,r]

{
εh0(Y )

|
∑n

i=1 ξi(Y )bji|

}
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However, the approval of this value has a condition. That is, if it is less than a few multiplier
of 1

h0(Y ) , then it would be better to give up leap and then to use SSA. In this approach, [14]
the suggestion is that h0(Y ) term on the right hand side in the Equation (2.4) is replaced by
hj(Y ) to have more reasonable leap condition. In this case, if hj(Y ) approaches to zero,
this can be a problem. A new τ -selection procedure enables to determine the largest value
of τ with enlarging the accuracy and without slowing down the simulation under the leap
condition. Previously, the calculation of the total change is in the following form

fjj′(Y ) =
n∑
i=1

∂hj(Y )

∂Yi
vij′ , (j, j

′ = 1, . . . , r). (2.9)

A function fjj′ is a hazard of reaction j as a consequence of the occurence of reaction j′.
Hereby, n denotes the total number of substratees and vij′ indicates the net change of substrate
i (i = 1, . . . , n) as a consequence of the j′th reaction. Also, vj or vj′ is a n-dimensional
vector. As obtained before in Section 2.2.1, in Equation (2.3), after expansion of a first-order
Taylor expansion, the following equality is found.

∆hj(Y ) = hj(Y + ¯λ(Y, τ))− hj(Y )

≈
n∑
i=1

τ

(
∂

∂Yi
hj(Y )

) r∑
j′=1

hj′(Y )vij′ , (2.10)

where ¯λ(Y, τ) stands for the expected change in state at time step τ . Then, as kj is gener-
ated from a Poisson random variable with parameter hj(Y )τ , i.e., kj ∼ Poi(hj(Y )τ ), and

¯λ(Y, τ) = τ
∑r

j=1 hj(Y )vj , in which kj is the number of occurence of the jth reaction and
the following approximation can be reached.

¯λ(Y, τ) ≈
r∑
j=1

Poi(hj(Y )τ)Vj . (2.11)

By inserting Equation (2.10) into Equation (2.11), interchanging the two summations and
employing the approximation of ¯λ(Y, τ), ∆hj(Y ) is obtained as follows

∆hj(Y ) ≈
r∑

j′=1

fjj′(Y )Poi(hj′(Y )τ). (2.12)

Here, the mean and variance of ∆hj(Y ) can be written by
∑r

j′=1 fjj′(Y )×E(Poi(hj′(Y )τ))

and
∑r

j′=1 fjj′(Y ) × V ar(Poi(hj′(Y )τ)), in order. Using these, the following expression
can be derived.

E(∆hj(Y )) ≈
r∑

j′=1

fjj′(Y )hj(Y )τ ≡ µj(Y )τ

and

V ar(∆hj(Y )) ≈
r∑

j′=1

f2
jj′(Y )hj(Y )τ ≡ σ2

j (Y )τ
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for j = 1, . . . , r.

As a result, the largest acceptable τ is chosen as

τ = minj

{
εh0(Y )

|µj(Y )|
,
ε2h2

0(Y )

σ2
j (Y )

}
(2.13)

since |µj(Y )τ | ≤ εh0(Y ) and
√
σj(Y )τ ≤ εh0(Y ) and using

∆hj(Y ) ≈ E(∆hj(Y ))±
√
V ar(∆hj(Y )). (2.14)

At the final step, similar to the other methods, update the system by replacing Y and t with
Y + λ(Y ) and t+ τ , respectively.

Unlike the previous Poisson τ -leap method in the Equation (2.4), this new approach provides
extra state to choose the value of τ . However, in both case, there is no situation such that one
is more accurate than the other. When to use one of them, the computationally simplier one
can be chosen [7],[17].

2.2.7 Approximate Gillespie Algorithm

Lastly, one of the alternative approaches of the poisson τ -leap method is the approximate
Gillespie algorithm in the literature. Basically, the approximate Gillespie algorithm [17],
which depends on the extension of the exact Gillespie method. It states that k numbers of
reactions, generated from the Gamma distribution with a parameter

∑r
j=1 hj(Y ), where each

of them occurs in an exponential time step t, is performed rather than a single reaction at a
time. Then, it can be demonstrated that τ ∼ Γ(k, h0(Y )), where τ presents the time interval
of k reactions in the total hazard, h0(Y ), h0(Y ) =

∑r
j=1 hj(Y ). In this case, the system is

updated by replacing t by t := t+ τ and by changing the current state Y by Y := Y + λ(Y ),
where the net change in the state is found via λ(Y ) =

∑r
j=1 kjvj . In this expression vj is

the net effect of the jth reaction by showing the jth row of the net effect matrix V as used
previously. By this way, it is assumed that the essential time for every reaction correspons to
that of Gillespie. Under this assumption, the total number of reactions during the interval τ is
determined by controlling k in each time interval. For this purpose, it is initially described a k
satisfying the leap condition in each time step. Then, the change in hazard function ∆hj(Y )

(j = 1, ..., r) is approximated by the first order Taylor expansion in the time interval [t, t+ τ ]

in a such way that the following equality can be obtained as performed in the poisson τ -leap
approach.

∆hj(Y ) = hj(Y + ¯λ(Y, τ))− hj(Y ) ≈ ¯λ(Y, τ)hj(Y ) =

n∑
i=1

¯λ(Y, τ)
∂hij(Y )

∂Yi
(2.15)

in which the expected change in the state by regarding k simultaneous reaction is computed
by

¯λ(Y, τ) = Y (t+ τ)− Y (t) =
r∑
j=1

kjνj .
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In the above expression, kj shows the number of times of the jth reaction and νj is the net
effect of the jth reaction by denoting the jth row of the net effect matrix V as before. Hence,
by using a gamma distribution, we can show τ ∼ Γ(k, h0(Y )) where k = E(τ)h0(Y ). In
this expression, E(τ) illustrates the expected τ on average.

Then, by inserting this k into Equation (2.15), the approximation of

∆hj(Y ) ≈
r∑
j=1

fjj′(Y )τh0(Y ),

is acquired where the total change in hazard of reaction j′ is described in terms of fjj′ via

fjj′ =
∑
i=1

∂hj(Y )

∂Yi
νij

for the execution of the reaction j′. Finally, in order to obtain the confidence interval, the
following expression is written as

∆hj(Y ) ≈ E(∆hj(Y ))±
√
V ar(∆hj(Y )), (2.16)

where

E(∆hj(Y )) ≈
r∑

j′=1

fjj′(Y )E(τ)h0(Y ) =

r∑
j=1

fjj′(Y )
k

h0(Y )
h0(Y ) = k

r∑
j=1

fjj′(Y )

(2.17)
and

V ar(∆hj(Y )) ≈
r∑

j′=1

f2
jj′(Y )V ar(τ)h0(Y ) =

r∑
j=1

f2
jj′(Y )

k

h0(Y )
h0(Y ) = k

r∑
j=1

f2
jj′(Y ).

(2.18)
By substituting Equation (2.17) and (2.18) into the required leap condition Equation (2.2), the
below expression can be found

|k|
r∑

j′=1

fjj′(Y ) ≤ εh0(Y )

and √√√√(k r∑
j′=1

f2
jj′(Y )

)
≤ εh0(Y ).

Accordingly, the optimal k is computed from

k = min
j

⌈
εh0(Y )∣∣∣∑r
j′=1 fjj′(Y )

∣∣∣ , ε2h2
0(Y )∣∣∣∑r

j′=1 f
2
jj′(Y )

∣∣∣
⌉
. (2.19)

Indeed, mostly, inserting the distributions feature of k and τ into the leap condition and find-
ing a conservative confidence interval has been derived for the poisson distribution too [2].
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But in these studies, the confidence intervals are constructed one-sided and by taking a fixed
significance level α which roughly sets the tabulated value to 1. Furthermore, they generate
large intervals which decreases the accuracy of the approximate algorithms. Hereby, the fol-
lowing part introduces this study with confidence intervals so that we can produce accurate
results regarding previous studies. The presentation of k via a confidence interval has not
been yet to the best of our knowledge. By means of this extension, we consider to add a sig-
nificance level to our analysis. Furthermore, in order to improve the accuracy of k, we present
to apply sufficient statistic in the derivation of k. Specifically, we use the maximum likelihood
estimator approach in the derivation of parameter. Then, we apply other alternative methods
in the inference of k still within the extension of k via interval via the confidence interval. In
addition to poisson distribution, we also use gamma distribution under the mentioned estima-
tors. Therefore, we find an alternative confidence interval which is different from the intervals
in the literature for the parameter k with a high accuracy.
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CHAPTER 3

EXTENSION OF LEAP CONDITION

In this thesis, firstly, we use the maximum likelihood estimator, method of moment estimator
and Bayesian approach to obtain an acceptable value of k which can give more accurate and
more narrower result. This process is based on the advantage of the sufficient statistic in
inference of parameters via the Rao-Blackwell theorem [1]. This theorem says that if the
parameter is replaced by the sufficient statistics, the expected variance is smaller than the
variance without the sufficient statistic while we can still keep the unbiased of the parameter.
Moreover, we extend the leap condition by using higher order truncated Taylor expansion
whose original estimators are found under the first order. Finally, we present alternative k
interval that can have higher accuracy by with a controllable significance α.

3.1 Estimation of Model Parameters Using via Maximum Likelihood Estima-
tor (MLE)

In order to get the maximum likelihood estimator of our parameter k, we can begin to describe
the likelihood function for the value of k, denoted by L(k), under the Poisson distribution,
i.e, τ ∼ Poi(k).

L(k) =
n∏
i=1

f(τ ; k) =
e−nkk

∑n
i=1 τi∏n

i=1 τi!
,

where f(τ ; k) is probability density function with random sample τi’s and unknown parameter
k from Poisson distribution. The natural logarithm of L(k) is given by

ln(L(k)) = −nk +
n∑
i=1

τiln(k)− ln(
n∏
i=1

τi!).

To find the maximum, we solve the following equation.

d

dk
ln(L(k)) = −n+

n∑
i=1

τi
n

= 0

From here, it is reached that k̂ =
∑n
i=1 τi
n = τ

n , where the notation of hat, ,̂ denotes that it is
obtained from MLE.
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Moreover, under the Gamma distribution with parameters k and h0(Y ), that is,
τ ∼ Γ(k, h0(Y )), the likelihood function can be written by

L(k, h0(Y )) =

(∏n
i=1 τi

)h0(Y )−1
e−
∑n
i=1

τi
n

knh0(Y )
(
Γ(h0(Y ))n

) ,

where the probability density function f(τ, k, h0(Y )) is shown as

f(τ, k, h0(Y )) =
τh0(Y )−1e−τ/k

kh0(Y )Γ(h0(Y ))
.

Then, the log-likelihood funtion ln(L(k, h0(Y ))) is presented via

ln(L(k, h0(Y ))) = −nh0(Y )ln(k)− nln(Γ(h0(Y ))) + (h0(Y )− 1)ln(

n∏
i=1

τi)−
n∑
i=1

τi
n
.

Later, the partial derivatives of ln(L(k, h0(Y ))) are found as

∂ln(L(k, h0(Y )))

∂k
= −nh0(Y )

k
+

n∑
i=1

τi
k2

(3.1)

After solving Equations (3.1), k̂ is attained as k̂ =
∑n
i=1 τi

nh0(Y ) = τ
nh0(Y ) .

3.1.1 Confidence Intervals with Poisson Distribution

As mentioned previously, MLE method can be used to infer the model parameters of approxi-
mate SSA. These parameters are k and τ , defined in terms of k. Theoretically, it is known that
the MLE approach will always give sufficient estimate if it exists. Hence, while τ ∼ Poi(k),

the MLE of k is found as τ
n . Then, by inserting it into ∆hj(Y ), the following expression is

obtained
∆hj(Y ) =

∑
j=1

fjj′(Y )
τ

n
.

With the value of z = 1, similar to Equation (2.17), the equality

∆hj(Y ) ≈ E(∆hj(Y ))±
√
V ar(∆hj(Y ))

is attained.

Since τ ∼ Poi(k), the mean of the value τ is E(τ) = k and the variance of the value
τ is found as V ar(τ) = k. Thus, the following equalities for the approximate values of
E(∆hj(Y )) and V ar(∆hj(Y )) are represented, respectively.

E(∆hj(Y )) ≈
r∑

j′=1

fjj′(Y )E(
τ

n
) =

r∑
j′=1

fjj′(Y )
k

n
= k

r∑
j′=1

fjj′(Y )

n
. (3.2)

V ar(∆hj(Y )) ≈
r∑

j′=1

f2
jj′(Y )V ar(

τ

n
) =

r∑
j′=1

f2
jj′(Y )

n2
k = k

r∑
j′=1

f2
jj′(Y )

n2
. (3.3)
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After substituting Equation (3.2) and (3.3) into the required leap condition such that

|k
∑r

j′=1

fjj′ (Y )

n | ≤ εh0(Y ) and

√
k
∑r

j′=1

f2
jj′ (Y )

n2 ≤ εh0(Y ), a suitable k can be derived as

k = min
j

⌈
εh0(Y )n

|
∑r

j′=1 fjj′(Y )|
,

ε2h2
0(Y )n2

|
∑r

j′=1 f
2
jj′(Y )|

⌉
(3.4)

It can be observed that the value of εh0(Y )n∑r
j′=1 f

2
jj′ (Y )

can be smaller than the value of ε2h20(Y )n2∑r
j′=1 f

2
jj′ (Y )

.

Furthermore, in order to find an admissable k, the confidence interval can be constructed for
the value of k. Under large number of molecules in the collection of hazard function, it is
known that the poisson distribution converges to the normal distribution as a consequence of
the central limit theorem [1]. Hereby, in the derivation of the confidence interval for k, the
poisson distributed random variable can be tabulated by the normal distribution. Accordingly,
the critical value in the calculation of the error term can be found by the standard normal
distribution table value. So, k = τ ± zα/2

√
τ
n , while zα/2 denotes the tabulated normal value

for the significance level α. Then, substituting this expression into ∆hj(Y ), the following
equality is obtained as

∆hj(Y ) =
r∑

j′=1

fjj′(Y )
(
τ ± zα/2

√
τ

n

)
.

For this statement, E(∆hj(Y )) and V ar(∆hj(Y )) are calculated by using the assumption of
E(
√
τ) =

√
k (See Appendix B.1) via

E(∆hj(Y )) ≈
r∑

j′=1

fjj′(Y )E(τ ± zα
2

√
τ

n
)

=

r∑
j′=1

fjj′(Y )
(
E(τ)±

zα
2

τ
E(
√
τ)
)

= k ± zα
2

√
k√
n

r∑
j′=1

fjj′(Y ) (3.5)

and

V ar(∆hj(Y )) ≈
r∑

j′=1

f2
jj′(Y )V ar(τ ± zα

2

√
τ

n
)

=
r∑

j′=1

f2
jj′(Y )

(
V ar(τ) +

z2
α/2

n
V ar(

√
τ)±

2zα/2√
n
Cov(

√
τ , τ)

)
=

r∑
j′=1

f2
jj′(Y )k, (3.6)

as V ar(
√
τ) ≈ 0 and Cov(

√
τ , τ) ≈ 0.
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Then, by inserting Equation (3.5) into the required leap condition, the following inequality is
obtained. ∣∣∣∣∣∣

(
(
√
k ±

zα/2

2
√
n

)2 +
zα/2

2
√
n

) r∑
j=1

fjj′

∣∣∣∣∣∣ ≤ εh0(Y ).

Then, it can be found that this inequality for the value of k is

k ≤
(√

εh0(Y )∑r
j=1 fjj′/Y

±
zα/2

2
√
n

)2 ∓
zα/2

2
√
n

)2

.

Applying the same process for Equation (3.6), a suitable k can be found by [5]

k = min
j

⌈(√
εh0(Y )∑r
j′=1 fjj′(Y )

+ (
zα/2

2
√
n

)2 −
zα/2

2
√
n

)2

,

(√
εh0(Y )∑r
j′=1 fjj′(Y )

− (
zα/2

2
√
n

)2 +
zα/2

2
√
n

)2

,

ε2h2
0(Y )∑r

j′=1 f
2
jj′(Y )

⌉
(3.7)

Hereby, it can be hard to compare between previous studies. However, we can say that the
MLE guarantess the condition of the Cramer Rao lower bound, when an efficient estimator
for k is found [3]. In other words, it is stable with less variance [1]. As a numerically, the
comparison between previous result will be discussed in Section 3.6.

3.1.2 Confidence Intervals with Gamma Distribution

Under the assumption that τ ∼ Γ(k, h0(Y )) from the distributional assumption of the ap-
proximate Gillespie method, the MLE of k is found as τ

nh0(Y ) where τ =
∑n

i τi. Then, with
the knowledge of the value of z = 1, similar to Equation (2.17),

∆hj(Y ) ≈ E(∆hj(Y ))±
√
V ar(∆hj(Y )).

As τ ∼ Γ(k, h0(Y )), the mean of the value τ is equaled to E(τ) = k
h0(Y ) and the vari-

ance of the value τ is computed as V ar(τ) = k
h20(Y )

. Thus, the following equalities for the
approximate values of E(∆hj(Y )) and V ar(∆hj(Y )) can be obtained, in order.

E(∆hj(Y )) ≈
r∑

j′=1

fjj′(Y )

nh0(Y )
E(τ) =

k

h2
0(Y )

r∑
j′=1

fjj′(Y ) (3.8)

and

V ar(∆hj(Y )) ≈
r∑

j′=1

f2
jj′(Y )

n2h2
0(Y )

V ar(τ) =
k

n2h4
0(Y )

r∑
j′=1

f2
jj′(Y ). (3.9)

After plugging Equation (3.8) and (3.9) into the leap condition, a suitable k can be gained as

k = min
j

⌈ ∣∣∣∣∣ εh3
0(Y )∑r

j′=1 fjj′(Y )

∣∣∣∣∣ ,
∣∣∣∣∣ ε2h6

0(Y )n2∑r
j′=1 f

2
jj′(Y )

∣∣∣∣∣
⌉
. (3.10)
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It can be seen that the value of εh30(Y )∑r
j′=1 fjj′ (Y )

is smaller than the value of ε2h60(Y )n2∑r
j′=1 f

2
jj′ (Y )

as shown

in Equation (2.19) for 0 < nh0(Y ) < 1 . This implies that k found via Equation (3.10) can
be generated with more accurate result.

In addition to these, to find k, the confidence interval can be constructed. Therefore, the

formula E(k) ± Γα/2

√
V ar(k)
n as the well-known representation of the confidence interval,

gives that k ≈ k
nh20(Y )

± Γα/2
nh0(Y )

√
k

h0(Y ) . In this inequality, Γα/2 denotes the tabulated normal
value for the significance level α. Whereas the tabulated form of gamma distribution is not
available, we prefer to convert the gamma as a chi-square distribution such a way that the
chi-square, with ν degrees of freedom, i.e, χ2

ν is equaivalent to Gamma(γ,β) where γ = ν
2

and β = 2. Moreover, it is also known that 2X
β ∼ χ2

2γ if X ∼ Gamma(γ, β) based on the
theorem in Bain and Engelhardt [1]. Therefore while τ ∼ Γ(k, h0(Y )), 2τ

h0(Y ) ∼ χ2
(2k), that

is chi-square distribution with 2k degrees of freedom and χ2
tab,(2k),α

2
is a tabulated value for

chi-square distribution with 2k degrees of freedom with significance level α . If we insert this
expression into the confidence interval for k and thereby, k, can be defined as below:

E(k)− χ2
tab,(2k),α

2

√
V ar(k)

n

and

E(k) + χ2
tab,(2k),(1−α

2
)

√
V ar(k)

n

since χ2 is skewed distribution and the critical vaues of both left and right side of the con-
fidence interval have distinct cut off point, i.e, not symmetric, via χ2

tab,(2k),α
2

= χ2
α
2

and

χ2
tab,(2k),(1−α

2
) = χ2

1−α
2

, respectively. Then, inserting this expression into ∆hj(Y ), it contin-
ues as

∆hj(Y ) =
r∑

j′=1

fjj′(Y )

(
k

nh2
0(Y )

−
χ2
α/2

nh2
0(Y )

√
k

n

)
(3.11)

and

∆hj(Y ) =

r∑
j′=1

fjj′(Y )

(
k

nh2
0(Y )

+
χ2

1−α/2

nh2
0(Y )

√
k

n

)
. (3.12)

Again substituting k = τ
nh0(Y ) into Equation (3.11) and (3.12), the following statements are

reached.

∆hj(Y ) ≈
r∑

j′=1

fjj′(Y )

(
τ

n2h3
0(Y )

−
χ2
α/2

nh2
0(Y )

√
τ

n2h0(Y )

)
.

∆hj(Y ) ≈
r∑

j′=1

fjj′(Y )

(
τ

n2h3
0(Y )

−
χ2
α/2

n2h2
0(Y )

√
τ

h0(Y )

)
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and

∆hj(Y ) ≈
r∑

j′=1

fjj′(Y )

(
τ

n2h3
0(Y )

+
χ2

1−α/2

nh2
0(Y )

√
τ

n2h0(Y )

)
.

∆hj(Y ) ≈
r∑

j′=1

fjj′(Y )

(
τ

n2h3
0(Y )

+
χ2

1−α/2

n2h2
0(Y )

√
τ

h0(Y )

)
.

For this statement, the derivations of the values of E(
√
τ) and V ar(

√
τ) are evaluated by

using the assumption of E(
√
τ) =

√
k

h0(Y ) and V ar(
√
τ) =

√
k

h20(Y )
(See Appendix B.2) by

E(∆hj(Y )) ≈
r∑

j′=1

fjj′(Y )

(
E(τ)

n2h3
0(Y )

− χ2
α/2

E(
√
τ)

n2h2
0(Y )

√
h0(Y )

)
(3.13)

=

r∑
j′=1

fjj′(Y )

(
k

n2h4
0(Y )

− χ2
α/2

√
k

n2h2
0(Y )

√
h2

0(Y )

)

=

(
k

n2h4
0(Y )

− χ2
α/2

√
k

n2h3
0(Y )

) r∑
j′=1

fjj′(Y )

and

E(∆hj(Y )) ≈
(

k

n2h4
0(Y )

+ χ2
1−α/2

√
k

n2h3
0(Y )

) r∑
j′=1

fjj′(Y ), (3.14)

V ar(∆hj(Y )) ≈
r∑

j′=1

f2
jj′(Y )

(
V ar(τ)

n4h6
0(Y )

− (χ2
α/2)

2V ar(
√
τ)

n4h5
0(Y )

)
(3.15)

=

r∑
j′=1

f2
jj′(Y )

(
k

n4h8
0(Y )

− (χ2
α/2)

2

√
k

n4h6
0(Y )

)

=

(
k

n4h8
0(Y )

− (χ2
α/2)

2

√
k

n4h6
0(Y )

) r∑
j′=1

f2
jj′(Y )

and

V ar(∆hj(Y )) ≈
(

k

n4h8
0(Y )

+ (χ2
1−α/2)2

√
k

n4h6
0(Y )

) r∑
j′=1

f2
jj′(Y ). (3.16)

Then, by embedding Equation (3.13) into the required leap condition, the subsequent inequal-
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ity is derived. ∣∣∣∣∣∣
(

k

n2h4
0(Y )

− χ2
α/2

√
k

n2h3
0(Y )

) r∑
j′=1

fjj′(Y )

∣∣∣∣∣∣ ≤ εh0(Y )

∣∣∣∣∣∣
(

k

n2h4
0(Y )

− χ2
α/2

√
k

n2h3
0(Y )

+
(χ2
α/2)2

4n2h2
0(Y )

−
(χ2
α/2)2

4n2h2
0(Y )

)
r∑

j′=1

fjj′(Y )

∣∣∣∣∣∣ ≤ εh0(Y )

∣∣∣∣∣∣
( √

k

nh2
0(Y )

−
χ2
α/2

2nh0(Y )

)2

−
(χ2
α/2)2

4n2h2
0(Y )

 r∑
j′=1

fjj′(Y )

∣∣∣∣∣∣ ≤ εh0(Y )

∣∣∣∣∣∣
( √

k

nh2
0(Y )

−
χα/2

2nh0(Y )

)2

−
(χ2
α/2)2

4n2h2
0(Y )

∣∣∣∣∣∣ ≤ εh0(Y )

|
∑r

j′=1 fjj′(Y )|
.

Then , this inequality for the value of k can be found as

k ≤


√√√√ εh0(Y )

|
∑r

j′=1 fjj′(Y )|
+

(χ2
α/2)2

4n2h2
0(Y )

+
χ2
α/2

2nh0(Y )

2

n2h4
0(Y ).

Applying the same process for Equation (3.14), Equation (3.15) and Equation (3.16), a suit-
able k can be computed by

k ≤ min
j

⌊ ∣∣∣∣∣∣∣

√√√√ εh0(Y )

|
∑r

j′=1 fjj′(Y )|
+

(χ2
α/2)2

4n2h2
0(Y )

+
χ2
α/2

2nh0(Y )

2

n2h4
0(Y )

∣∣∣∣∣∣∣ ,∣∣∣∣∣∣∣

√√√√ εh0(Y )

|
∑r

j′=1 fjj′(Y )|
+

(χ2
1−α/2)2

4n2h2
0(Y )

−
χ2

1−α/2

2nh0(Y )

2

n2h4
0(Y )

∣∣∣∣∣∣∣ ,∣∣∣∣∣∣∣

√√√√ εh0(Y )

|
∑r

j′=1 f
2
jj′(Y )|

+
(χ2
α/2)4

4n4h4
0(Y )

+
(χ2
α/2)2

2n2h2
0(Y )

2

n4h8
0(Y )

∣∣∣∣∣∣∣ ,∣∣∣∣∣∣∣

√√√√ εh0(Y )

|
∑r

j′=1 f
2
jj′(Y )|

+
(χ2

1−α/2)4

4n4h4
0(Y )

−
(χ2

1−α/2)2

2n2h2
0(Y )

2

n4h8
0(Y )

∣∣∣∣∣∣∣
⌋
. (3.17)

3.2 Estimation of Model Parameters by Using MME

Under the Poisson distribution with parameter k, τ ∼ Poi(k), with probability density func-
tion f(τ ; k) = e−kkτ

τ ! , E(τ) = k and V ar(τ) = k. Followingly, the method of moment
estimation (MME) can be denoted as

µPoi = µ = k =

∑n
i=1 τi
n

=
τ

n
,
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where µPoi denotes for the moment for poisson distribution. Here, as E(τ) and V ar(τ) are
the same, it is chosen just one µ, µ1. Thus, the value of k from by using the method of moment
estimator, k̃, under the Poisson distribution equals to k̃ = τ

n . Actually, it is the same as the
value of k from MLE under poisson distribution.

Secondly, under the Gamma distribution with parameters k and h0(Y ), τ ∼ Γ(k, h0(Y )), to
find the method of moment estimation, there can be written that

µ1
Gamma = µ = h0(Y )k (3.18)

and

µ2
Gamma = σ2 + µ2

= h0(Y )k2 + h2
0(Y )k2

= k2h0(Y )(1 + h0(Y )), (3.19)

where µiGamma represents the moments for gamma distribution. Then, using Equation (3.18)

and Equation (3.19), MMEs are found as k̃ =
∑n

i=1

(
τi−τ̄
nτ

)2

= (n−1)n
τ̄ S2, where S is a

sample variance and h̃0(Y ) = τ̄
k̃

. Then also, value of k can be used as k̃ = τ̄
h0(Y ) since value

of h0(Y ) is known. Indeed, it is known that the moment estimator cannot give guarantee for
obtaining sufficient estimator as the MLE approach. But we consider that the final expression
of k can be compared with other k’s found by distinct estimation methods and the best k
expression can be detected by simulation studies. These studies are our future works as refered
in conclusion part.

Accordingly, since the value of k from MME under poisson distribution is the same as the
value of k from MLE under poisson distribution, a suitable k value based on MME can be
obtained from

k = min
j

⌈
εh0(Y )n

|
∑r

j′=1 fjj′(Y )|
,

ε2h2
0(Y )n2

|
∑r

j′=1 f
2
jj′(Y )|

⌉
. (3.20)

Clearly, MLE and MME under the poisson distribution give the same result.

Furthermore, based on the gamma distribution, the moment estimation of the value k is ac-
quired as k =

∑n
i ( τi−τnτ )2 = [(n−1)n]

τ S2, where is S is a sample variance. Thereby, the
mean of ∆hj(Y ), E(∆hj(Y )) and the variance of ∆hj(Y ), V ar(∆hj(Y )) are computed
approximately as the following way.

E(∆hj(Y )) ≈
r∑

j′=1

fjj′(Y )E(
(n− 1)n

τ
S2) (3.21)

=
r∑

j′=1

fjj′(Y )
(n− 1)n

E(τ)
S2

=
h0(Y )n(n− 1)S2

k

r∑
j=1

fjj′(Y ).
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V ar(∆hj(Y )) ≈
r∑

j′=1

fjj′(Y )V ar(
(n− 1)n

τ
S2) (3.22)

=
h2

0(Y )n(n− 1)S2

k

r∑
j′=1

f2
jj′(Y ).

Then, similar to application of MLE, after inserting Equations (3.21) and (3.22) into the re-
quired leap condition, a favorable k value can be attained from

k ≤ min
j

⌈ ∣∣∣∣∣n(n− 1)S2
∑r

j=1 fjj′(Y )

ε

∣∣∣∣∣ ,
∣∣∣∣∣h0(Y )n(n− 1)S2

∑r
j=1 f

2
jj′(Y )

ε

∣∣∣∣∣
⌉
. (3.23)

Indeed here, although Equation (3.23) can be simulated to determine which k value gives
more accurate result, we cannot directly say that the expression in Equation (3.23) is narrower
than the expression of k in Equation (2.19). Because, theoretically it is not guarantee that all
produces estimators are sufficient statistics as the maximum likelihood estimators. Hence,
this final expression is one of the future works by evaluating its value in simulation studies.
Theoretically, it is not straightforward to do this.

3.3 Confidence Intervals without MLE and MME for Poisson Distribution

Alongside with these confidence interval for the value of k, there are various approaches for
the confidence intervals for the mean of the Poisson distribution. The first approach is based
on the normal approximation are suggested in the study of Sahai and Khurshid (1993) [18].

Thus, according to their work, the lower and the upper bound of the value of k, denoted by kl
and ku, can be written by the following expression.

kl = k − 1

2
+

1

2
z2

1−α/2 + z1−α/2

√
k − 1

2
+

1

4
z2

1−α/2,

ku = k +
1

2
+

1

2
z2

1−α/2 + z1−α/2

√
k +

1

2
+

1

4
z2

1−α/2.

(3.24)

Hereby, similar to previous approaches, by inserting Equation (3.24) into the necessary places,
∆hj(Y ) is found by

∆hj(Y ) ≈
r∑

j′=1

fjj′

(
τ ± 1

2
+

1

2
z2

1−α/2 + z1−α/2

√
τ ± 1

2
+

1

4
z2

1−α/2

)
.

Then, E(∆hj(Y )) and V ar(∆hj(Y )) are calculated by the properties of E(τ) = k and
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V ar(τ) = k. Thus,

E(∆hj(Y )) ≈
r∑

j′=1

fjj′E

(
τ ± 1

2
+

1

2
z2

1−α/2 + z1−α/2

√
τ ± 1

2
+

1

4
z2

1−α/2

)
(3.25)

=
r∑

j′=1

fjj′

(
E(τ)± 1

2
+

1

2
z2

1−α/2 + z1−α/2E

(√
τ ± 1

2
+

1

4
z2

1−α/2

))

=
r∑

j′=1

fjj′
(
k ± 1

2
+

1

2
z2

1−α/2 + z1−α/2E(A(τ))
)

(3.26)

and

V ar(∆hj(Y )) ≈
r∑

j′=1

f2
jj′V ar

(
τ ± 1

2
+

1

2
z2

1−α/2 + z1−α/2

√
τ ± 1

2
+

1

4
z2

1−α/2

)

=
r∑

j′=1

f2
jj′
(
V ar(τ) + z2

1−α/2V ar(A(τ)) + 2z1−α/2Cov(τ,A(τ))
)

=
r∑

j′=1

f2
jj′
(
k + z2

1−α/2V ar(A(τ)) + 2z1−α/2Cov(τ,A(τ))
)
. (3.27)

In order to simplify the above expression, A(τ) is defined as A(τ) =
√
τ ± 1

2 + 1
4z

2
1−α/2.

Then, applying the similar process for calculatingE(
√
τ) (See AppendixB.2) to findE(A(τ)),

it can be approximated by E(A(τ)) ≈
√
k ± 1

2 + 1
4z

2
1−α/2 . Also, under the same approx-

imations, it can be reached that V ar(A(τ)) ≈ 0 and Cov(τ,A(τ)) ≈ 0. By substituting
Equation (3.25) and (3.27) into the required leap condition, the following inequalities have

k + z2
1−α/2

√
k ± 1

2
+

1

4
z2

1−α/2 ≤
εh0(Y )

|
∑r

j′=1 fjj′(Y )|
∓ 1

2
− 1

2
z2

1−α/2

k ≤
(√√√√ εh0(Y )

|
∑r

j′=1 fjj′(Y )|
+
z2

1−α/2

4
−
z1−α/2

2

)2

∓ 1

2
+
z2

1−α/2

2
(3.28)

and

k ≤ εh0(Y )

|
∑r

j′=1 f
2
jj′(Y )|

. (3.29)

Hence, the suitable value of k can be chosen as

k ≤ min
j∈

⌈(√√√√ εh0(Y )

|
∑r

j′=1 fjj′(Y )|
+
z2

1−α/2

4
−
z1−α/2

2

)2

− 1

2
+
z2

1−α/2

2
,

(√√√√ εh0(Y )

|
∑r

j′=1 fjj′(Y )|
+
z2

1−α/2

4
−
z1−α/2

2

)2

+
1

2
+
z2

1−α/2

2
,

εh0(Y )

|
∑r

j′=1 f
2
jj′(Y )|

⌉
.
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Equation (3.30) is gained under some approximations and assumptions. Considering these
issues, the solution is not general and is valid under these conditions.

Moreover, the confidence interval via the lower and upper bound of k with a normal approxi-
mation can be written more simply as [18].

kl = k − z1−α/2
√
τ .

ku = k + z1−α/2
√
τ .

Repeating the same procedure for this value k’s, and as a common choosing α such that
zα/2 = 1 to simplify, the value of k can obtained as

k ≤ min
j

⌈(√
εh0(Y )

|
∑r

j′=1 fjj′(Y )|
+

1

4
− 1

2

)2

,

(√
εh0(Y )

|
∑r

j′=1 fjj′(Y )|
+

1

4
+

1

2

)2

,

ε2h2
0(Y )

|
∑r

j′=1 f
2
jj′(Y )|

⌉
. (3.30)

Lastly, an improved normal approximation for the confidence interval gives us the following
k with kl and ku based on the study of Sahai and Khurshid (1993) [18].

kl = k +
2z2
α/2 + 1

6
−
(

1

2
+

√
2z2
α/2

(
k − 1

2
+

2z2
α/2 + 1

18

))
.

ku = k +
2z2
α/2 + 1

6
+

(
1

2
+

√
2z2
α/2

(
k +

1

2
+

2z2
α/2 + 1

18

))
.

Finally, by implemeting a similar process as before and usingE(∆hj(Y )) and V ar(∆hj(Y )),
the subsequents can be found that

k ∓ E(B(τ)) ≤ εh0(Y )∑r
j=1 fjj′(Y )

− z2
α/2

1

3
− 1

6
± 1

2
(3.31)

and

k + z2
α/2V ar(B(τ)) + 2zα/2Cov(τ,B(τ)) ≤ ε2h2

0(Y )∑r
j=1 f

2
jj′(Y )

, (3.32)

where B(τ) =

√
τ ± 1

2 +
z2
α/2

+2

18 .

Then, like the previous studies, under similar assumption and approximations, choosing α
such that zα/2 = 1, inequalities (3.31) and (3.32) can imply

k +
√
k ≤ εh0(Y )∑r

j′=1 fjj′(Y )
− 1

3
− 1

6
± 1

2
,

k ≤
(√

εh0(Y )∑r
j′=1 fjj′(Y )

− 1

3
+

1

12
± 1

2
− 1

2

)
(3.33)
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and

k ≤ ε2h2
0(Y )∑r

j=1 f
2
jj′(Y )

. (3.34)

Therefore, an appropriate value of k can be presented as

k ≤ min
j

⌈(√
εh0(Y )

|
∑r

j′=1 fjj′(Y )|
− 9

12
− 1

2

)
,

(√
εh0(Y )

|
∑r

j′=1 fjj′(Y )|
+

3

12
− 1

2

)
,

ε2h2
0(Y )

|
∑r

j=1 f
2
jj′(Y )|

⌉
. (3.35)

Hereby, it can be easily inferred that the value of
(√

εh0(Y )
|
∑r
j′=1 fjj′ (Y )| −

9
12 −

1
2

)
is smaller

than the value of εh0(Y )∣∣∣∑r
j′=1 fjj′ (Y )

∣∣∣ . Moreover, the other outputs can be compared directly by

simulation. Actually, it is not theoretically straightforward because of square root.

3.4 Estimation of Model Parameters via Bayesian Approach

In addition to these confidence intervals obtained by MLE and MME, it can be possible to
obtain appropriate value of k by using the bayesian estimator. For this purpose, we take the
prior distribution of our parameters as τ ∼ Poi(k) and k ∼ Γ(α, β), where α and β are
the given parameters [1]. Then, the conditional posterior of τ |k is derived as the gamma
distribution due to the conjugate relation between the poisson and the gamma. Hence, the
expectation of the conditional posterior is found as

E(τ |k) =

∑
τi + β

n+ 1
α

. (3.36)

By inserting Equation (3.36) into the function ∆hj(Y ), the following expression is obtained.

∆hj(Y ) =
∑
j′=1

fjj′(Y )

∑
τi + β

n+ 1
α

.

Then, it can be seen the following equality by taking E(τ) = k and V ar(τ) = k as the
property of the Poisson distribution τ ∼ Poi(k).

E(∆hj(Y )) ≈
∑

fjj′(Y )
E(τ) + β

n+ 1
α

(3.37)

=
k + β

n+ 1
α

∑
fjj′(Y )

and

V ar(∆hj(Y )) ≈
∑ f2

jj′(Y )(
n+ 1

α

)2V ar(τ) (3.38)

=
k(

n+ 1
α

)2

∑
f2
jj′(Y ).
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Later, similar to previous derivations, by substituting them into the leap condition, the coming
inequalities can be derived as

k ≤
(n+ 1

α)εh0(Y )

|
∑
fjj′(Y )|

− β,

k ≤
(n+ 1

α)2ε2h2
0(Y )

|
∑
f2
jj′(Y )|

.

As a result, an appropriate value of k can be reached by the inequality below.

k ≤ min
j

⌈
(n+ 1

α)εh0(Y )

|
∑
fjj′(Y )|

− β,
(n+ 1

α)2ε2h2
0(Y )

|
∑
f2
jj′(Y )|

⌉
. (3.39)

By this way, it can generate more flexible and narrower confidence intervals for k due to the
controlable significance level α and appropriate estimation techniques, respectively.

3.5 Extension of Leap Condition via 2nd and 3rd Order Truncated Taylor Ex-
pansion

Previously, using the first order Taylor expansion of hazard function h0(Y ), the novel deriva-
tions that we introduce have been presented. Now, in this part, h0(Y ) is expanded by using
2nd and 3rd order truncated Taylor formula. This expansion provides more information about
the distribution. In other words, 2nd and 3rd order expansion can supply the knowledge of the
variance and covariance, respectively. Actually, these are also known as 2nd and 3rd moment.
Moreover, the obtained confidence intervals are narrower than the results from the previous
studies. So that we can obtain a more accurate k by forming confidence interval with param-
eters of estimation deriving MLE and MME under Poisson and Gamma distribution due to
Rao-Blackwell theorem [1], [3], seperately.

3.5.1 Extension of Leap Condition by 2nd Order Taylor Expansion

We consider to apply 2nd order truncated Taylor expansion, rather than using 1st order as the
following way.

hj(Y + λ̄(Y, τ)) ≈ hj(Y ) + λ̄(Y, τ)∇hj(Y ) +
1

2
λ̄(Y, τ)H(Y )λ̄T (Y, τ).

hj(Y + λ̄(Y, τ))− hj(Y ) ≈ λ̄(Y, τ)∇hj(Y ) +
1

2
λ̄(Y, τ)H(Y )λ̄T (Y, τ).

∆hj(Y ) ≈ λ̄(Y, τ)∇hj(Y ) +
1

2
λ̄(Y, τ)H(Y )λ̄T (Y, τ), (3.40)

where ∇hj(Y ) is a gradient of hj(Y ) such that ∇hj(Y ) =
∑n

i=1
∂hj(Y )
∂Yi

, H(Y ) denotes a

hessian matrix of hj(Y ) such that H(Y ) =
∑n

i,l=1
∂2hj(Y )
∂Yi∂Yl

and λ̄(Y, t) = Y (t+ τ)−Y (t) =
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∑r
j=1 kjνj . Then, ∆hj(Y ) can be approximated by the following way.

∆hj(Y ) ≈ λ̄(Y, τ)∇hj(Y ) +
1

2
λ̄(Y, τ)H(Y )λ̄T (Y, τ).

∆hj(Y ) ≈
n∑
i=1

λ̄i(Y, τ)
∂hij(Y )

∂Yi
+

1

2

n∑
i,l=1

λ̄i
T

(Y, τ)
∂2hij(Y )

∂Yi∂Yl
λ̄i(Y, τ), (3.41)

where λ̄i(Y, τ) =
∑r

j=1 kjvji and λ̄i
T

(Y, τ) =
∑r

j=1 vjikj . Accordingly, we can obtained
the subsequent statement.

∆hj(Y ) ≈ k
r∑

j′=1

fjj′(Y ) +
1

2
k2

r∑
j′=1

gjj′(Y ), (3.42)

where

fjj′(Y ) =

r∑
i=1

νij′
∂hj(Y )

∂Yi

and

gjj′(Y ) =
n∑
l=1

n∑
i=1

νij′
∂2hj(Y )

∂Yi∂Yl
νj′i.

Then, considering τ is generated from gamma distribution with parameters k and h0(Y ), i.e.,
τ ∼ Γ(k, h0(Y )), k can be written as k = τ.h0(Y ) by using the expectation. After substi-
tuting this final expression k into Equation (3.42), ∆hj(Y ) can be obtained in the following
way.

∆hj(Y ) ≈
r∑

j′=1

(
τh0(Y )fjj′(Y ) +

h2
0(Y )

2
τ2gjj′(Y )

)
. (3.43)

We have that

∆hj(Y ) ≈ E(∆hj(Y ))± zα/2
√
V ar(∆hj(Y )) (3.44)

as seen in the previous studies in Section (2.2.7). Then, the mean of Equation (3.43),
E(∆hj(Y )), can be calculated by

E(∆hj(Y )) ≈ E
( r∑
j′=1

(
τh0(Y )fjj′(Y ) +

h2
0(Y )

2
τ2gjj′(Y )

))

=
r∑

j′=1

(
E(τ)h0(Y )fjj′(Y ) + E(τ2)

h2
0(Y )gjj′(Y )

2

)
. (3.45)

36



Since E(τ) = k
h0(Y ) and E(τ2) = k(k+1)

h20(Y )
,

E(∆hj(Y )) ≈ E
( r∑
j′=1

(
τh0(Y )fjj′(Y ) +

h2
0(Y )

2
τ2gjj′(Y )

))

=
r∑

j′=1

(
k

h0(Y )
h0(Y )fjj′(Y ) +

k(k + 1)

h2
0(Y )

h2
0(Y )gjj′(Y )

2

)

=
r∑

j′=1

(
kfjj′(Y ) +

k(k + 1)

2
gjj′(Y )

)
=

r∑
j′=1

(
k2

2
gjj′(Y ) + k

(
fjj′(Y ) +

gjj′(Y )

2

))

=

r∑
j′=1

((
k

√
gjj′(Y )

2
+

(fjj′(Y ) +
gjj′ (Y )

2 )√
2gjj′(Y )

)2

−
(

(fjj′(Y ) +
gjj′ (Y )

2 )√
2gjj′(Y )

)2)
.

(3.46)

Then, by substituting this final expression in Equation (3.46) into the leap condition similar
to the previous works, the subsequent inequality can be acquired.∣∣∣∣ r∑

j′=1

((
k

√
gjj′(Y )

2
+

(fjj′(Y ) +
gjj′ (Y )

2 )√
2gjj′(Y )

)2

−
(

(fjj′(Y ) +
gjj′ (Y )

2 )√
2gjj′(Y )

)2)
≤ εh0(Y )

∣∣∣∣.
(3.47)

After that,(
(fjj′(Y ) +

gjj′ (Y )

2 )√
2gjj′(Y )

)2

− εh0(Y ) ≤
r∑

j′=1

(
k

√
gjj′(Y )

2
+

(fjj′(Y ) +
gjj′ (Y )

2 )√
2gjj′(Y )

)2

(3.48)

and
r∑

j′=1

(
k

√
gjj′(Y )

2
+

(fjj′(Y ) +
gjj′ (Y )

2 )√
2gjj′(Y )

)2

≤ εh0(Y ) +

(
(fjj′(Y ) +

gjj′ (Y )

2 )√
2gjj′(Y )

)2

. (3.49)

Using the inequality in (3.49), the following expressions are found.√√√√ r∑
j′=1

(
k

√
gjj′(Y )

2
+

(fjj′(Y ) +
gjj′ (Y )

2 )√
2gjj′(Y )

)2

≤

√√√√εh0(Y ) +

(
(fjj′(Y ) +

gjj′ (Y )

2 )√
2gjj′(Y )

)2

.

r∑
j′=1

k

√
gjj′(Y )

2
≤

√√√√εh0(Y ) +

(
(fjj′(Y ) +

gjj′ (Y )

2 )√
2gjj′(Y )

)2

−
r∑

j′=1

(fjj′(Y ) +
gjj′ (Y )

2 )√
2gjj′(Y )

.

So,

k ≤

√
εh0(Y ) +

(
(fjj′ (Y )+

gjj′ (Y )

2
)√

2gjj′ (Y )

)2

−
∑r

j′=1

(fjj′ (Y )+
gjj′ (Y )

2
)√

2gjj′ (Y )∑r
j=1

√
gjj′ (Y )

2

. (3.50)
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Moreover, by using the inequality in (3.48) and doing the same process appyling the expres-
sion in Equation (3.49), the following inequality can be reached.√(

(fjj′ (Y )+
gjj′ (Y )

2
)√

2gjj′ (Y )

)2

− εh0(Y )−
∑r

j′=1

(fjj′ (Y )+
gjj′ (Y )

2
)√

2gjj′ (Y )∑r
j=1

√
gjj′ (Y )

2

≤ k. (3.51)

In a similar way of the calculation of E(∆hj(Y )), V ar(∆hj(Y )) is gained in the following
way.

V ar(∆hj(Y )) ≈ V ar
( r∑
j′=1

(
τh0(Y )fjj′(Y ) +

h2
0(Y )

2
τ2gjj′(Y )

))
.

=
r∑

j′=1

(
h2

0(Y )fjj′(Y )V ar(τ) +
h4

0gjj′(Y )

4
V ar(τ2)

+ h3
0(Y )fjj′(Y )gjj′(Y )Cov(τ, τ2)

)
. (3.52)

As τ ∼ Γ(k, h0(Y ), it is known that V ar(τ) = k
h20(Y )

, V ar(τ2) = 4k3+10k2+6k
h40(Y )

= 2k(k+1)(2k+3)
h40(Y )

and Cov(τ, τ2) = 2k(k+1)
h30(Y )

. Substituting these values into the equation of
V ar(∆hj(Y )) (Equation (3.52)), the expression below is derived.

V ar(∆hj(Y )) ≈
r∑

j′=1

(
h2

0(Y )fjj′(Y )
k

h2
0(Y )

+
h4

0(Y )gjj′(Y )

4

2k(k + 1)(2k + 3)

h4
0(Y )

+ h3
0(Y )fjj′(Y )gjj′(Y )

2k(k + 1)

h3
0(Y )

)
.

=
r∑

j′=1

(
f2
jj′(Y )k +

g2
jj′(Y )2k(k + 1)(2k + 3)

4
+ fjj′(Y )gjj′(Y )2k(k + 1)

)
.

(3.53)

After plugging into the leap condition, it is obtained that

k ≤

√
ε2h2

0(Y )−A(Y ) +
∑r

j′=1B
2(Y )−

∑r
j′=1B(Y )∑r

j=1 gjj′(Y )
, (3.54)

where A(Y ) =
∑r

j′=1

(
2fjj′(Y )gjj′(Y ) + f2

jj′(Y ) + 3
2g

2
jj′(Y )

)
and

B(Y ) =

(
5
2
gjj′ (Y )+2fjj′ (Y )gjj′ (Y )

2gjj′ (Y )

)
.

k = min
j∈[1,r]

⌈
√
εh0(Y ) +

(
(fjj′ (Y )+

gjj′ (Y )

2
)√

2gjj′ (Y )

)2

−
∑r

j=1

(fjj′ (Y )+
gjj′ (Y )

2
)√

2gjj′ (Y )∑r
j′=1

√
gjj′ (Y )

2

,

√
ε2h2

0(Y )−A(Y ) +
∑r

j=1B
2(Y )−

∑r
j′=1B(Y )∑r

j′=1 gjj′(Y )

⌉
, (3.55)
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where A(Y ) =
∑r

j′=1

(
2fjj′(Y )gjj′(Y ) + f2

jj′(Y ) + 3
2g

2
jj′(Y )

)
and

B(Y ) =

(
5
2
gjj′ (Y )+2fjj′ (Y )gjj′ (Y )

2gjj′ (Y )

)
. Hereby, the aim of defining A(Y ) and B(Y ) is a sim-

plification for the writing. As defined above, the function gjj′(Y ) comes from 2nd order
truncated Taylor expansion. Moreover, it can be observable that when the function gjj′(Y )

will be close to zero, then the expression can be the same as the output from 1st order Taylor
expansion.

3.5.1.1 Confidence Intervals with Poisson Distribution by Using MLE

From MLE under the Poisson distribution, τ ∼ Poi(k), it is known that the value of k equals
to k = τ

n from Section 3.1.1. Then, this value is substituted into ∆hj(Y ) in Equation (3.42).
Then, ∆hj(Y ) equals to

∆hj(Y ) ≈
r∑

j′=1

(
τ

n
fjj′(Y ) +

τ2

2n2
gjj′(Y )

)
, (3.56)

where

fjj′(Y ) =

r∑
i=1

νij′
∂hj(Y )

∂Yi

and

gjj′(Y ) =

n∑
l=1

n∑
i=1

νij′
∂2hj(Y )

∂Yi∂Yl
νj′i.

Evaluating E(∆hj(Y )) and V ar(∆hj(Y )) in the following expression.

E(∆hj(Y )) ≈
r∑

j′=1

(
E(τ)

fjj′(Y )

n
+ E(τ2)

gjj′(Y )

2n2

)
. (3.57)

Since τ ∼ Poi(k), the equalities of E(τ) = k and E(τ2) = k + k2 are known. Thus,

E(∆hj(Y )) ≈
r∑

j′=1

(
k

n
fjj′(Y ) +

(k + k2)

2n2
gjj′(Y )

)
,

=

r∑
j′=1

((
fjj′(Y )

n
+
gjj′(Y )

2n2

)
k +

gjj′(Y )

2n2
k2

)
,

=

r∑
j′=1

((√
gjj′(Y )

n
√

2
k +

2fjj′(Y )n+ gjj′(Y )

2n
√

2gjj′(Y )

)2

−
(

2fjj′(Y )n+ gjj′(Y )

2n
√

2gjj′(Y )

)2)
(3.58)
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and also, V ar(τ) = k, V ar(τ2) = k + 6k2 + 4k3 and Cov(τ, τ2) = 2k2 + k are considered
due to Poisson distribution [1]. Then, the following equalities are obtained.

V ar(∆hj(Y )) ≈
r∑

j′=1

V ar

(
τ

n
fjj′(Y ) +

τ2

2n2
gjj′(Y ),

)

=
r∑

j′=1

(
f2
jj′(Y )

n
V ar(τ) +

g2
jj′(Y )

4n4
V ar(τ2) +

fjj′(Y )gjj′(Y )

n3
Cov(τ, τ2)

)
,

=

r∑
j′=1

(
f2
jj′(Y )

n2
k +

g2
jj′(Y )

4n4
(k + 6k2 + 4k3) +

fjj′(Y )gjj′(Y )

n3
(2k2 + k)

)
,

=
r∑

j′=1

(
g2
jj′(Y )

n4
k3 +

(
3gjj′(Y )

2n4
+

2fjj′(Y )gjj′(Y )

n3

)
k2

+

(
f2
jj′(Y )

n2
+
g2
jj′(Y )

4n4
+
fjj′(Y )gjj′(Y )

n3
+

)
k

)
(3.59)

After substituting Equation (3.58) into the leap condition, the expression becomes the follow-
ing form

∣∣∣∣ r∑
j′=1

((√
gjj′(Y )

n
√

2
k +

2fjj′(Y )n+ gjj′(Y )

2n
√

2gjj′(Y )

)2

−
(

2fjj′(Y )n+ gjj′(Y )

2n
√

2gjj′(Y )

)2)∣∣∣∣ ≤ εh0(Y ).

(3.60)

Subsequently, the inequality below can be inferred from Equation in (3.60).

(
√∑r

j′=1

(
2fjj′ (Y )n+gjj′ (Y )

2n
√

2gjj′ (Y )

)2

− εh0(Y )−
∑r

j′=1

(
2fjj′ (Y )n+gjj′ (Y )

2n
√

2gjj′ (Y )

)
∑r

j′=1

√
gjj′ (Y )

n
√

2

)
≤ k (3.61)

and

k ≤

√
εh0(Y ) +

∑r
j′=1

(
2fjj′ (Y )n+gjj′ (Y )

2n
√

2gjj′ (Y )

)2

−
∑r

j′=1

(
2fjj′ (Y )n+gjj′ (Y )

2n
√

2gjj′ (Y )

)
∑r

j′=1

√
gjj′ (Y )

n
√

2

. (3.62)

Similarly, substituting Equation (3.59) into the leap condition gives that

k ≤

√
ε2h2

0(Y )−
∑r

j′=1

( g2
jj′ (Y )−gjj′ (Y )

4n4−
fjj′ (Y )gjj′ (Y )−6fjj′ (Y )

n3

−
3f2
jj′ (Y )

n2

)
−
∑r

j′=1

(
3

2n2 −
2fjj′ (Y )

n

)
∑r

j′=1

gjj′ (Y )

n2

.

(3.63)
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Consequently, from Equation (3.62) and Equation (3.63), an admissable value of k is chosen
by

k = min
j

⌈
√
εh0(Y ) +

∑r
j′=1

(
fjj′ (Y )+

gjj′ (Y )

n2√
2gjj′ (Y )

)2

−
∑r

j′=1

(
fjj′ (Y )+

gjj′ (Y )

n2√
2gjj′ (Y )

)
∑r

j′=1

√
gjj′ (Y )

n
√

2

,

√
ε2h2

0(Y ) +
∑r

j′=1

(
fjj′(Y ) +

3gjj′ (Y )

4n2

)2

−
∑r

j′=1

(
fjj′(Y ) +

3gjj′ (Y )

4n2

)
∑r

j′=1

√
gjj′ (Y )

n

⌉
. (3.64)

It is not tractable to directly to compare Equation (3.64) to the previous values. Because there
are terms with square roots and a lot of terms. Also, it is not certain the interval of these
terms in Equation (3.64). For example, the functions fjj′(Y ) and gjj′(Y ) are consisted of
hazard functions and hazards is a combination of states Yi’s and reaction rate constants ci’s.
So, hazard function is prone to reduce during the reaction as the number of molecules is de-
crasing. Moreover, it is not clear whether the terms is bigger than 1 or not. It is just known
that reaction rate constants are positive. This reason makes also difficulty in the comparison.
However, it is known that MLE can give more accurate result than outputs from other esti-
mators if it exists and the estimation 2nd order truncated Taylor series expansion gives more
accurate results than the estimation by the 1st order Taylor expansion formula. Therefore, it
can be comparible with the results in Equation (3.4), where ∆hj(Y ) is expanded by the first
order Taylor formula. Accordingly, due to the underlying theoretical reason in higher order
expansion, we can conclude that Equation (3.64) is narrower than Equation (3.4).

In addition to these , the confidence interval under the Poisson distribution for the value of
k estimated from MLE is obtained as, previously in Section 3.1.1, k ≈ τ

n ± zα2
√

τ
n2 . Then,

plugging this interval into Equation (3.42) gives the following expression.

∆hj(Y ) ≈
r∑

j′=1

((
τ

n
± zα

2

√
τ

n2

)
fjj′(Y ) +

1

2

(
τ

n
± zα

2

√
τ

n2

)2

gjj′(Y )

)
,

=
r∑

j′=1

(
gjj′(Y )

2n
τ2 ± zα/2

gjj′(Y )

n2
τ
√
τ +

(
fjj′(Y )

n
+ z2

α/2

gjj′(Y )

2n2

)
τ

± zα/2
fjj′(Y )

n

√
τ

)
, (3.65)

where

fjj′(Y ) =

r∑
i=1

νij′
∂hj(Y )

∂Yi

and

gjj′(Y ) =
n∑
l=1

n∑
i=1

νij′
∂2hj(Y )

∂Yi∂Yl
νj′i.
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Then, the values of E(∆hj(Y )) and V ar(∆hj(Y )) are calculated by using the equalities
below.

E(τ
√
τ) ≈ k

√
k,

having a similar process of obtaining E(
√
τ),

V ar(
√
τ) ≈ 0,

V ar(τ
√
τ) ≈ k + 3k2,

Cov(τ2, τ
√
τ) ≈ −k2

√
k,

Cov(τ2, τ) = 2k2 + k,

Cov(τ2,
√
τ) = −k

√
k,

Cov(τ
√
τ) ≈ 0,

Cov(τ
√
τ ,
√
τ) ≈ k,

Cov(τ,
√
τ) ≈ 0.

Hence,

E(∆hj(Y )) ≈
r∑

j′=1

(
gjj′(Y )

2n
E(τ2)± zα/2

gjj′(Y )

n2
E(τ
√
τ)

+

(
fjj′(Y )

n
+ z2

α/2

gjj′(Y )

2n2

)
E(τ)± zα/2

fjj′(Y )

n
E(
√
τ)

)
,

=

r∑
j′=1

(
gjj′(Y )

2n
(k + k2)± zα/2

gjj′(Y )

n2
(k
√
k)

+

(
fjj′(Y )

n
+ z2

α/2

gjj′(Y )

2n2

)
k ± zα/2

fjj′(Y )

n

√
k

)
(3.66)
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and

V ar(∆hj(Y )) ≈
r∑

j′=1

(
g2
jj′(Y )

4n2
V ar(τ2) + z2

α/2

g2
jj′(Y )

n4
V ar(τ

√
τ)

+

(
fjj′(Y )

n
+ z2

α/2

gjj′(Y )

2n2

)2

V ar(τ) + z2
α/2

f2
jj′(Y )

n2
V ar(τ)

− zα/2
g2
jj′(Y )

n3
Cov(τ2, τ

√
τ) +

gjj′(Y )

n

(fjj′(Y )

n

+ z2
α/2

gjj′(Y )

2n2

)
Cov(τ2, τ)± zα/2

fjj′(Y )gjj′(Y )

n2
)Cov(τ2,

√
τ)

+ zα/2
gjj′(Y )

n2

(fjj′(Y )

n
+ z2

α/2

gjj′(Y )

2n2

)
Cov(τ

√
τ , τ)

+ z2
α/2

fjj′(Y )gjj′(Y )

n3
Cov(τ

√
τ ,
√
τ)

+ zα/2
fjj′(Y )

n

(fjj′(Y )

n
+ z2

α/2

gjj′(Y )

2n2

)
Cov(τ,

√
τ)

)
,

=
r∑

j′=1

(
g2
jj′(Y )

4n2
(k + 6k2 + 4k3) + z2

α/2

g2
jj′(Y )

n4
(k + 3k2)

+

(
fjj′(Y )

n
+ z2

α/2

gjj′(Y )

2n2

)2

k + z2
α/2

f2
jj′(Y )

n2
V ar(τ)

− zα/2
g2
jj′(Y )

n3
k2
√
k +

gjj′(Y )

n

(fjj′(Y )

n
+ z2

α/2

gjj′(Y )

2n2

)
(2k2 + k)

± zα/2
fjj′(Y )gjj′(Y )

n2
k
√
k + z2

α/2

2fjj′(Y )gjj′(Y )

n3
k

)
. (3.67)

From Equation (3.66) and Eqaution (3.67), by getting k alone is effortful since the equations
have not integer powers. In other words, the equations have roots powers. Hence, the process
of constructing confidence interval for k at the beginning and inserting Equation (3.42) is
likely to be inefficient as a workload.

3.5.1.2 Confidence Intervals with Gamma Distribution by Using MLE

From MLE, it is known that the value of k equals to k = τ
nh0(Y ) . Then, this value is inserted

∆hj(Y ) in Equation (3.42).

∆hj(Y ) ≈
r∑

j′=1

(
τ

nh0(Y )
fjj′(Y ) +

τ2

2n2h2
0(Y )

gjj′(Y )

)
, (3.68)

where

fjj′(Y ) =

r∑
i=1

νij′
∂hj(Y )

∂Yi

and

gjj′(Y ) =
n∑
l=1

n∑
i=1

νij′
∂2hj(Y )

∂Yi∂Yl
νj′i.
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Thereby,

E(∆hj(Y )) ≈ E
( r∑
j′=1

(
τ

nh0(Y )
fjj′(Y ) +

τ2

2n2h2
0(Y )

gjj′(Y )

))
,

=

r∑
j′=1

(
E(τ)

nh0(Y )
fjj′(Y ) +

E(τ2)

2n2h2
0(Y )

gjj′(Y )

)
,

=

r∑
j′=1

(
k

nh2
0(Y )

fjj′(Y ) +
k(k + 1)

2n2h4
0(Y )

gjj′(Y )

)
,

=

r∑
j′=1

(
gjj′(Y )

2n2h4
0(Y )

k2 +

(
fjj′(Y )

nh2
0(Y )

+
gjj′(Y )

2n2h4
0(Y )

)
k

)
,

=

r∑
j′=1

(( √
gjj′(Y )

√
2nh2

0(Y )
k +

2nh2
0(Y )fjj′(Y ) + gjj′(Y )

2nh2
0

√
2gjj′(Y )

)2

−
(

2nh2
0(Y )fjj′(Y ) + gjj′(Y )

2nh2
0

√
2gjj′(Y )

)2)
(3.69)

and

V ar(∆hj(Y )) ≈ V ar
( r∑
j′=1

(
τ

nh0(Y )
fjj′(Y ) +

τ2

2n2h2
0(Y )

gjj′(Y )

))
,

=

r∑
j′=1

V ar

(
τ

nh0(Y )
fjj′(Y ) +

τ2

2n2h2
0(Y )

gjj′(Y )

)
,

=

r∑
j′=1

((
fjj′(Y )

nh0(Y )

)2

V ar(τ) +

(
gjj′(Y )

2n2h2
0(Y )

)2

V ar(τ2)

+
2fjj′(Y )gjj′(Y )

2n3h3
0(Y )

Cov(τ, τ2)

)
,

=
r∑

j′=1

((
fjj′(Y )

nh0(Y )

)2 k

h2
0(Y )

+

(
gjj′(Y )

2n2h2
0(Y )

)2 2k(k + 1)(2k + 3)

h4
0(Y )

+
2fjj′(Y )gjj′(Y )

2n3h3
0(Y )

2k(k + 1)

h3
0(Y )

)
. (3.70)

Inserting Equation (3.69) into the required leap condition gives the following inequality.∣∣∣∣ r∑
j′=1

(( √
gjj′(Y )

√
2nh2

0(Y )
k + C(Y )

)2

−
(
C(Y )

)2)∣∣∣∣ ≤ εh0(Y ), (3.71)

where C(Y ) =
2nh20(Y )fjj′ (Y )+gjj′ (Y )

2nh20
√

2gjj′ (Y )
. Then, the inequality in (3.71) implies that

r∑
j′=1

(
C(Y )

)2 − εh0(Y ) ≤
r∑
j=1

( √
gjj′(Y )

√
2nh2

0(Y )
k + C(Y )

)2

√∑r
j′=1

(
C(Y )

)2 − εh0(Y )− C(Y )∑r
j′=1

√
gjj′ (Y )

√
2nh20(Y )

≤ k (3.72)
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and

r∑
j′=1

( √
gjj′(Y )

√
2nh2

0(Y )
k + C(Y )

)2

≤
r∑

j′=1

(
C(Y )

)2
+ εh0(Y ),

where C(Y ) =
2nh20(Y )fjj′ (Y )+gjj′ (Y )

2nh20
√

2gjj′ (Y )
. Here, the aim of defining C(Y ) is just for a simplifi-

cation of the writing.

k ≤

√∑r
j′=1

(
2nh20(Y )fjj′ (Y )+gjj′ (Y )

2nh20
√

2gjj′ (Y )

)2

− εh0(Y )− 2nh20(Y )fjj′ (Y )+gjj′ (Y )

2nh20
√

2gjj′ (Y )∑r
j′=1

√
gjj′ (Y )

√
2nh20(Y )

. (3.73)

Similarly, V ar(∆hj(Y )) gives the expression below.

k ≤

√
ε2h2

0(Y ) +
∑r

j′=1

(
19g2

jj′ (Y )

4n4h80(Y )
− 8fjj′ (Y )gjj′ (Y )

n3h60(Y )
−

3f2
jj′ (Y )

n2h40(Y )

)
−
(

5gjj′ (Y )

2n2h40(Y )
+

2fjj′ (Y )

nh20(Y )

)
∑r

j′=1

gjj′ (Y )

n2h40(Y )

.

(3.74)

Then, from inequalities in (3.73) and (3.74), it can be inferred that

k = min
j

⌈
√∑r

j′=1

(
2nh20(Y )fjj′ (Y )+gjj′ (Y )

2nh20
√

2gjj′ (Y )

)2

− εh0(Y )− 2nh20(Y )fjj′ (Y )+gjj′ (Y )

2nh20
√

2gjj′ (Y )∑r
j′=1

√
gjj′ (Y )

√
2nh20(Y )√

ε2h2
0(Y ) +

∑r
j′=1

(
19g2

jj′ (Y )

4n4h80(Y )
− 8fjj′ (Y )gjj′ (Y )

n3h60(Y )
−

3f2
jj′ (Y )

n2h40(Y )

)
−
(

5gjj′ (Y )

2n2h40(Y )
+

2fjj′ (Y )

nh20(Y )

)
∑r

j′=1

gjj′ (Y )

n2h40(Y )

⌉
.

(3.75)

Thus, as MLE gives the sufficient statistics and as a consequence of the Rao-Blackwell theo-
rem [3], we can theoretically say that Equation (3.75) obtained from (3.75) can provide more
accurate results than the estimators derived by the method of moments.

Moreover, the confidence interval for the value of k estimated from MLE is found as previ-
ously, k ≈ k

nh20(Y )
− χ2

α/2

√
k

h40(Y )n3 and k ≈ k
nh20(Y )

+ χ2
1−α/2

√
k

h40(Y )n3 . Then, insterting
this interval into Equation (3.42) gives the following approximation.

∆hj(Y ) ≈
r∑

j′=1

((
k

nh2
0(Y )

− χ2
α/2

√
k

h4
0(Y )n3

)
fjj′(Y )

+
1

2

(
k

nh2
0(Y )

− χ2
α/2

√
k

h4
0(Y )n3

)2

gjj′(Y )

)
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and

∆hj(Y ) ≈
r∑

j′=1

((
k

nh2
0(Y )

+ χ2
1−α/2

√
k

h4
0(Y )n3

)
fjj′(Y )

+
1

2

(
k

nh2
0(Y )

+ χ2
1−α/2

√
k

h4
0(Y )n3

)2

gjj′(Y )

)
.

After some more steps, ∆hj(Y ) can be presented as

∆hj(Y ) =
r∑
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(
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√
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√
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+
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(3.76)

and

∆hj(Y ) =
r∑

j′=1

(
gjj′(Y )

2n2h4
0(Y )

k2 + χ2
1−α/2

2

n2
√
nh4

0(Y )
k
√
k

+

(
fjj′(Y )

nh2
0(Y )

+ (χ2
1−α/2)2 gjj′(Y )

2n3h4
0(Y )

)
k + χ2

1−α/2
fjj′(Y )

n
√
nh2

0(Y )

√
k

)
, (3.77)

where

fjj′(Y ) =
r∑
i=1

νij′
∂hj(Y )

∂Yi

and

gjj′(Y ) =
n∑
l=1

n∑
i=1

νij′
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∂Yi∂Yl
νj′i.

As k = τ
nh0(Y ) estimated from MLE, it is substituted into Equation (3.76) and Equation

(3.77). Hence,
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and

∆hj(Y ) ≈
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(3.79)
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E(∆hj(Y )) and V ar(∆hj(Y )) are calculated by using E(τ
√
τ) ≈

(
k
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)3/2, evaluated by

a similar process of finding E(
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and
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V ar(∆hj(Y )) ≈
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and
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Like Equation (3.66) and Eqaution (3.67), here, in Equation (3.80), Equation (3.81), Equation
(3.82) and Equation (3.83), it is not tractable to get alone k. These equations are consisted of
many terms with noninteger powers. For this reason, it makes finding the value of k harder.
So finding analytic result can be obtained via numeric analysis.

3.5.2 Extension of Leap Condition via 3rd Order Truncated Taylor Expansion

Similar to using 2nd order truncated Taylor expansion, we apply 3rd order truncated Taylor
expansion to approximate ∆hj(Y ) with the leap condition. Then, we have the following
statements.

∆hj(Y ) ≈
n∑
i=1

λ̄i(Y, τ)
∂hj(Y )

∂Yi
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1

2
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where λ̄i(Y, τ) =
∑r

j=1 kjvji, λ̄l(Y, τ) =
∑r

j=1 kjvjl and λ̄m(Y, τ) =
∑r

j=1 kjvjm.

Accordingly, we can obtained the subsequent statement.
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where
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Similar to previous derivations, under the Gamma distribution, it is known that k = τh0(Y ).
Subsequently,
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Then, E(∆hj(Y )) and V ar(∆hj(Y )) are derived by
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and

V ar(∆hj(Y )) ≈
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As k ∼ Γ(k, h(0)(Y )), it is known that
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Then,

V ar(∆hj(Y )) ≈
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Inserting the statements in Equation (3.87) into the required leap condition results that

k ≤
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6

. (3.89)

As seen above, we can obtain the new values which expected to be more narrower as we
expected. Because, using 2nd and 3rd order truncated Taylor expansion are more accurate
approximation than using 1st order Taylor expansion.

3.6 Basic Numerical Example

As we mentioned above, the simulation of the result which we have obtained in this study is
the one of our future work. However, to show the accuracy of our claim, a basic example is
handled in this thesis. Consider the following system.

Y1 + Y2
c1−−→ Y5

Y1
c2−−→ Y1 + Y3

Y5
c3−−→ Y1 + Y2

Y5
c4−−→ Y3 + Y4

2 Y4
c5−−→ Y1

Y1
c6−−→ 2 Y4

Y3
c7−−→ ∅

Y4
c8−−→ ∅.
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Hereby, the state vector Y is consisting of Y1, . . . , Y5 such that Y = [Y1, Y2, Y3, Y4, Y5].
Then the vector c which is consisting of the reaction rate constants cj’s for each reaction
channel Rj for j = 1, . . . , 8. According the system, stoichoimetry matrix V can be written

by V =


−1 0 1 0 1 −1 0 0

−1 0 1 0 0 0 0 0

0 1 0 0 0 0 −1 0

0 0 0 1 −2 2 0 −1

1 0 −1 0 0 0 0 0

 .

Then, the state Y = [1, 12, 2, 10, 0] and the reaction rate constant c = [1, 0.5, 1, 0.05, 1, 0.25,

0.1, 0.1] are given. Our hazard functions for each reactions are in the following.

h1(Y ) = c1Y1Y2,

h2(Y ) = c2Y1,

h3(Y ) = c3Y5,

h4(Y ) = c4Y3,

h5(Y ) = c5Y1(Y1 − 1)/2,

h6(Y ) = c6Y1,

h7(Y ) = c7Y3,

h8(Y ) = c8Y4.

For this values, h0(Y ) is computed as h0(Y ) =
∑8

j=1 hj(Y ) = 59.5. When substituting this
values into Equation (3.7) with ε = 10−2, the result is

kMLE = min
j

⌈{
10.3699, 13.3436, 139.4761,

}⌉
. (3.90)

So, minimum values of k can be chosen as kMLE = 10. To compare the previous result in
the literature, we calculate the Equation (2.19). Then, k is chosen from

kAppGil = min
j

⌈{
11.8100, 139.4761

}⌉
. (3.91)

Equation (3.91) implies that minimum values of k can be chosen as kAppGil = 12.

Thus, Eqaution (3.90) gives the smallest value of k and narrower interval for k when compared
to the other. Moreover, if the error control parameter ε is chosen larger such as ε = 10−1,
then the interval is also larger. In other words, the values of k become as follows.

kMLE = min
j

⌈{
113, 123, 13948

}⌉
(3.92)

and

kAppGil = min
j

⌈{
118, 13948

}⌉
. (3.93)

For this case, MLE also gives the smallest value of k as kMLE = 113 and more narrower
interval for k. Instead of choosing larger ε, when ε becomes smaller such as ε = 10−3, then
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the interval is also smaller.

kMLE = min
j

⌈{
0.7848, 1.6566, 1.3948

}⌉
(3.94)

and

kAppGil = min
j

⌈{
1.1810, 1.3948

}⌉
. (3.95)

Equation (3.94) and Equation (3.94) gives the same value of k as k = 1. However, this is
an undesirable situation because it implies the exact solution. We do not want to get such a
solution. So we can inferred that error control parameter ε should be larger to get a desirable
solution for this example. Otherwise, it can become as an exact solution.

This is a basic example of comparison between the result from MLE under poisson distribu-
tion and the previous output in the approximate Gillespie algorithm. To obtain more desirable
output, a real system and real inputs can be used. The given values are chosen randomly
here. However, these arbitrary inputs satify desired results under some cases, not all cases.
As a consequence, this example shows that the new value of k is smaller than or equal to
the existing value of k in the literature. Furthermore, the new intervals are narrower than the
interval which obtained from approximate Gillespie algorithm. In addition to these, the other
new outputs in this study can be compared by the similar way.
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CHAPTER 4

CONCLUSION

In the biological systems, there are occuring many reactions. These reactions can be simulated
with the help of stochastic simulation algorithms such as Gillespie method, the next-reaction
method and the first-reaction method. However, they are not computationally useful to simu-
late the large systems. Because the speed of obtaining the result is slow although SSA gives
the exact result. In this way, approximate SSAs such as Poisson τ -leap methos, approximate
Gillespie algortihm can be the alternative choice to get the results faster ,i.e., to get less com-
putational demand. Basically, these approximate approaches depend on the leap condition.
This condition implies that the chosen time step τ satisfies that there should be no significance
change in the propensity function that is the hazard function, during the time interval [t, t+τ ].
Moreover, how many times each reaction can be carry out in each small time interval can be
computed so that it is possible to move along the systems history axis from one time step to
the next, rather than moving from one reaction to the next [2], [11].

In this thesis, considering the leap condition, we have derived the confidence interval for the
number of simultaneous reactions k in the time interval. Hereby, we have used maximum
likelihood estimator, method of moment estimator and Bayesian estimators to construct more
close and more narrower confidence interval for the parameter of k.

By using MLE, under Poisson distribution, we have found Equation (3.4) and it is the same
as Equation (2.19) which is obtained from approximate Gillespie algorithm. Also, we have
constructed the confidence interval for k at first, then we have inserted it into ∆hj(Y ) and
we have obtained Equation (3.7). That is, k can be chosen among of the following values(√
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+ (
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2
√
n
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2
√
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,
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)2 +
zα/2
2
√
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, ε2h20(Y )∑r
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2
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.

If εh0(Y )∑r
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> 1, then we have that

ε2h2
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>
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2
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.

Compared with Equation (3.4), it is clear that ε2h20(Y )∑r
j=1 f

2
jj′ (Y )

is larger than εh0(Y )∑r
j=1 fjj′ (Y )

. Also,
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)
, then

we have found more admissable value of k compared with Equation (2.19) and Equation (3.4).
In addition to under the Poisson distribution, we have also studied under the Gamma distribu-
tion by using MLE. Hereby, in Equation (3.10) the value of εh30(Y )∑r

j=1 fjj′ (Y )
is smaller than the

value of ε2h60(Y )∑r
j=1 f

2
jj′ (Y )
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> 1 as n ≤ 1. We have that εh30(Y )∑r
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.

Under these conditions, we have found the smallest value of k which can generated with
more accurate result. Furthermore, Equation (3.17) has acquired by constructing confidence
interval for the value of k at the beginning. Then, under the conditions which satisfying
1 <

εh30(Y )∑r
j=1 fjj′ (Y )

< εh0(Y )∑r
j=1 fjj′ (Y )

, Equation (3.17) compared with Equation (3.10) implies

that Equation (3.17) is smaller than Eqaution (3.10) if
z2
α/2

2
√
n
<

(√
εh0(Y )∑r
j=1 fjj′ (Y )

− 1
4 + 1

4

)
.

However, this condition is a rare as it can be observable when the reaction rate constants ci’s
in the calculation of hazard is very close to zero. In most reactions, ci’s are larger. As a re-
sult, using MLE under both Poisson and Gamma distribution has given the value of k which
generated with more accurate and more narrower result as desired.

As an alterative approach of MLE, we use MME which is one of the well known estimator.
Moreover, when compared to the results with MLE and MME, MLE has given more reliable
as it gives the optimal solution. Also, the MLE guarantess the condition of the Cramer Rao
lower bound, if an efficient estimator for k is found. In other words, it is stable with less
variance [1].

Alongside with MLE and MME, by using the study of Sahai and Khurshid (1993) [18], we
have found new confidence intervals for the value of k under the Poisson distribution. These
values are shown in Equations (3.30), (3.30) and (3.35). Theoretically, we can say that these
are also more narrower than Equation (2.19).

Additionally, instead of MLE and MME, we have used the Bayesian approach to obtain the
appropriate value of k. As a result, the output has given more flexible alternative confidence
intervals for k owing to the controllable significance level α. The value of α is chosen such
that satisfying the value of z = 1. So, for some results, we use this value to simplfy the
expression and to make easier the computation whereas we just leave the statements with
general form of z without any specific α.

Lastly, we have expanded the function of the net change in the hazard function with the 2nd

and 3rd order truncated Taylor expansion. We have applied the same process as the 1st order
Taylor expansion. The results from MME are not tractable because of their high powers,
while MLE can be more tractable. In other words, finding a unique solution for the value of
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k from MME is not easy analictly. Hereby, it can used optimization or numerical methods to
find the unique value of k.

As a consequence, we have used sufficient statistic in the derivation of k. Thus, theoretically,
we have found an admissable value of k which can generate closer, more accurate and more
narrower results due to Rao-Blackwell theorem [5], [6]. Moreover, from the advantage of
MLE, it is known that it gives sufficient statistics, whereas, the MME and Bayesian estimators
cannot guarantee sufficient outcomes. But if plausible k is obtained, it can be adjusted by
the formula of MME and Bayesian methods or the results of MLE can be a good starting
point while obtaining MME and Bayesian estimators to get sufficient statistics. Hence, as a
future work, we consider to generate simulation studies with distinct scenarios so that we can
numerically evaluate the performance of the found theoretically results.
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APPENDIX A

RAO-BLACKWELL THEOREM

Let X1, X2, . . . , Xn have joint pdf f(x1, x2, . . . , xn; θ), and let S = (S1, S2, . . . , Sk) be a
vector of jointly sufficient statistics for θ. If T is any unbiased estimator of τ(θ), and if
T ∗ = E(T ), then

1. T ∗ is an unbiased estimator of τ(θ),

2. T ∗ is a function of S, and

3. Var(T ∗) ≤ Var(T ) for every θ, and Var(T ∗)< Var(T ) for some θ unless T ∗ = T with
probability 1.
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APPENDIX B

DISTRIBUTIONS

B.1 Poisson Distribution

Let g(τ) =
√
τ be a smooth function for τ ≥ 0 with τ ∼ Poi(k). Then, by the Taylor

expansion around the mean µ = E(τ), the following expression can be obtained.

g(τ) = g(µ)+g′(µ)(τ −µ)+
g′′(µ)(τ − µ)2

2!
+
g′′′(µ)(τ − µ)3

3!
+ · · ·+ gt(µ)(τ − µ)t

t!
+ . . .

Then, the mean can be derived as

E(g(τ)) = g(µ) + g′(µ)E(τ − µ) +
g′′(µ)E(τ − µ)2

2!
+
g′′′(µ)E(τ − µ)3

3!
+ . . .

+
gt(µ)E(τ − µ)t

t!
+ . . .

= g(µ) + g′(µ)m1 +
g′′(µ)m2

2!
+
g′′′(µ)m3

3!
+ · · ·+ gt(µ)mt

t!
+ . . . ,

where mt is t-th central moment. In this case, considering just up to third order Taylor
expansion, m1 = 0 and m2 = m3 = µ. So, we have

E[g(τ)] =
√
µ+ 0 +

1

8
µ−

1
2 − 1

16
µ−

3
2 .

Then, E[g(τ)] = E[
√
τ ] ≈ √µ =

√
E(τ) =

√
k for µ >> 1. Thus, E(

√
τ) ≈

√
k.

B.2 Gamma Distribution

Similarly, we apply these processes for the gamma distribution with τ ∼ Γ(k, h0(Y )) and by
this way, t-th moment for the gamma distribution is defined as E(τ t) = (k+t−1)...(1)

ht0(Y )
. Then,

we can obtain E(τ) as below.

E(τ) =

√
k

h0(Y )
+

1

8

(
1√

k.h0(Y )
− 1

h4
0(Y ).k

√
k

)
,

withE[τ−µ] = 0, E[(τ−µ)2] = V (τ) = k
h20(Y )

andE[(τ−µ)3] = 2k
h30(Y )

. If k×h0(Y ) << 1,

then it is possible to reach that E[
√
τ ] =

√
k

h0(Y ) . Similarly, the equality V (
√
τ) =

√
k

h20(Y )

can be obtained.
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